Solution:
Let the predicate be,
$
\max \{g(x, y)\}-\min \{g(x, y)\}\ltt_h \text {. }
$
where $t_h$ is the threshold. consider $t_h \leq 3$,
$
\begin{aligned}
&\therefore P\left(R_i\right)=\max \{g(x, y)\}-\min \{g(x, y)\}\lt3 \\
&(x, y \in R)(x, y \in R)
\end{aligned}
$
Assume 4 connectivity Let us start with the seed pixel 6 after that select seed pixel 0 and then seed pixel 3.
5 |
6 |
6 |
6 |
7 |
7 |
6 |
6 |
6 |
7 |
6 |
7 |
5 |
5 |
4 |
7 |
6 |
6 |
4 |
4 |
3 |
2 |
5 |
6 |
5 |
4 |
5 |
4 |
2 |
3 |
4 |
6 |
0 |
3 |
2 |
3 |
3 |
2 |
4 |
7 |
0 |
0 |
0 |
0 |
2 |
2 |
5 |
6 |
1. |
1 |
0 |
1 |
0 |
3 |
4 |
4 |
1 |
0 |
1 |
0 |
2 |
3 |
5 |
4 |
Thus this image is segmented into 3 different regions by using a different seed point.