written 2.1 years ago by |
Solution:
Fuzzy addition Principle:
There ar two types of fuzzy addition.
(I) Projection:
The process of converting fury relation to a fuzzy set is known as projection.
$ \begin{aligned}\\ &\text { Projection on } A=\left\{\frac{0.4}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}\right\} \\\\ &\text { Propection on } B=\left\{\frac{1}{b_1}+\frac{03}{b_2}+\frac{0.8}{b_3}+\frac{1}{b^4}\right\} \\\\ & \end{aligned}\\ $
2) Cylindrical Exclusion:
$ \begin{aligned} &A=\left\{\frac{0.4}{a_1}+\frac{0.5}{a_2}+\frac{0.6}{a_3}\right\} \\ &B=\left\{\frac{0.8}{b_1}+\frac{1}{b_2}+\frac{0.8}{b_3}+\frac{0.6}{b_4}\right\} \end{aligned}\\ $
The process of converting fussy sets into furry relations is,
$ \left[\begin{array}{llll} \end{array}\left[\begin{array}{llll} 0.4 & 0.4 & 0.4 & 0.4 \\ 0.5 & 0.5 & 0.0 & 0.5 \\ 0.6 & 0.6 & 0.6 & 0.6 \end{array}\right]\right.\\ $