Solution:
Given $\frac{1}{\sqrt{1+\varepsilon^2}}=0.8$ from which $\varepsilon=0.75$
$\frac{1}{\sqrt{1+\lambda^2}}=0.2$ from which $\lambda=4.899$.
$\omega_s=0.6 \pi \mathrm{rad}, \omega_p=0.2 \pi \mathrm{rad}$
$
\begin{aligned}\\
&\frac{\omega_s}{\omega_p}=\frac{\Omega_s T}{\Omega_p T}=\frac{\Omega_s}{\Omega_p}=\frac{0.6 \pi}{0.2 \pi}=3 \\\\
&\begin{aligned}\\
N=\frac{\log d_{\varepsilon}}{\log 1 / k} &=\frac{\log 4.899}{\log 3} \\\\
&=1.71\\
\end{aligned}\\
\end{aligned}\\
$
$
\begin{aligned}\\
&\therefore N=2\\\\
&H(s)=\frac{1}{s^2+\sqrt{2} s+1}\\\\
&\Omega_c=\frac{\Omega_p}{\varepsilon^{1 / N}}=\frac{0.2 \pi}{(0.75)^{1 / 2}}\\\\
&=0.231 \pi\\
\end{aligned}\\
$
$
\begin{aligned}\\
H_a(s) &=H(s) \mid \\\\
s \rightarrow s / 0.231 \pi \\\\
&=\frac{0.5266}{s^2+1.03 s+0.5266}\\
\end{aligned}\\
$
$
\begin{aligned}\\
&=\frac{0.516 j}{s+0.51+j 0.51}+\frac{0.516 j}{s+0.51-j 0.51} \\\\
&=\frac{0.516 j}{s-(-0.51-j 0.51)}-\frac{0.516 j}{s-(-0.51+j 0.51)}\\
\end{aligned}\\
$
$
\begin{aligned}\\
&H(z)=\frac{0.516 j}{1-e^{-0.51 T} e^{-j 0.51 T} z^{-1}}-\frac{0.516 j}{1-e^{-0.51 T j 0.51 T} e^{-1}} \\\\
&T=15 e \\\\
&H(z)=\frac{0.3019 z^{-1}}{1-9.048 z^{-1}+0.36 z^{-2}} .\\
\end{aligned}\\
$