Solution:
$
H_d\left(e^{j \omega}\right)=e^{-j 3 \omega}\\
$
The frequency response is having a term $e^{-j \omega(N-1) / 2}$ which gives $h(n)$ symmetrical about $n=\frac{N-1}{2}=3$, we get a causal sequence.
$
\text { We have, } \begin{aligned}\\
h_d(n) &=\frac{1}{2 \pi} \int_{-\pi / 4}^{\pi / 4} e^{-j 3 \omega} \cdot e^{j \omega s} d \omega \\\\
&=\frac{1}{2 \pi} \int_{-\pi / 4}^{\pi / 4} e^{j(n-3) \omega} d \omega \\\\
&=\frac{\sin \pi / 4(n-3)}{\pi(n-3)}\\
\end{aligned}\\
$
For $n=7$, we have,
$
\begin{aligned}\\
&h_d(0)=h_d(6)=0.075 . \\\\
&h_d(1)=h_d(5)=0.159 .\\ \\
&h_d(2)=h_d(4)=0.22 \\\\
&h_d(3)=0.25 .\\
\end{aligned}\\
$
The non-causal windows sequence is,
$
\begin{aligned}\\
w_{H n}(n) &=0.5+0.5 \cos \frac{2 \pi n}{N-1} \text { for }-(N-1) / 2 \leq n \leq \frac{N-1}{2} \\\\
&=0, \quad \text { otherwise. }\\
\end{aligned}\\
$
For $N=7$.
$W_{H n}(n)=0.5+0.5 \cos \frac{2 \pi n}{N-1}$ for $-3 \leq n \leq 3$
0, otherwise.
$
\begin{aligned}\\
&\omega_{A n}(0)=0.5+0.5=1 \\\\
&W_{A n}(-1)=W_{H+n}(1)=0.5+0.5 \cos \pi / 3=0.75 \\\\
&W_{A n}(-2)=W_{A n}(2)=0.5+0.5 \cos 2 \pi / 3=0.25 \\\\
&W_{A n}(-3)=0.5+0.5 \cos \pi=0 .\\
\end{aligned}\\
$
The causal window sequence can be obtained by shifting the sequence $w_{A_m}(n)$ to right by 3 Samples.
$
\begin{aligned}\\
&\text { in.c. } W_{A n}(0)=W_{H_n}(b)=0, W_{H_n}(1)=W_{\text {Hn }}(5)=0.25\\\\
&W_{\text {An }}(2)=W_{\text {An }}(3)=0.75, \quad W_{\text {An }}(3)=1\\
\end{aligned}\\
$
The filter
Coefficients using tanning windows are,
$
\begin{aligned}\\
&h(n)=h_d(n) w_{\text {An }}(0)=\text { for } 0 \leq n \leq 6 . \\\\
&h(0)=h(6)=h_d(0) w_{\text {tn }}(0)=(0.075)(0)=0 .\\ \\
&h(1)=h(5)=h_d(1) \cdot w_{\text {tn }}(1)=(0.159)(0.25)=0.03975 \\\\
&h(2)=h(4)=h_d(2) \cdot w_{\text {An }}(2)=(0.22)(0.75)=0.165 \\\\
&h(3)=h_d(3) \cdot w_{\text {An }}(3)=(0.25)(1)=0.25 .\\
\end{aligned}\\
$