0
1.2kviews
In an LTI system the input sequence x(n)={1,1,1} and the impulse response h(n)={1,1}.Find the response of the LTI system by using DFT IDFT method.
1 Answer
0
63views

Solution:

˙y(n)=x(n)h(n)x(n)={1,1,1,0}h(n)={1,1,0,0}g(n)=x(n)+jh(n)={1j,1j,1,0}

$ \begin{aligned}\\ G(k) &=\sum_{n=0}^{N-1} g(n) e^{-j 2 \pi / N n k} \\\\ &=\sum_{n=0}^3 g(n) e^{-j \pi / 2 n k} \\\\ G(0) &=\sum_{n=0}^3 g(n) e^0=1-j+1-j+1=3-2 j\\ …

Create a free account to keep reading this post.

and 3 others joined a min ago.

Please log in to add an answer.