Solution:
Given:
$
\begin{aligned}\\
&A_p=-2 d B \\\\
&A_s=-10 d B \\\\
&f\Omega_p=20 \mathrm{rad} / \mathrm{sec} . \\\\
&\Omega_s=30 \mathrm{rad} / \mathrm{sec} .\\
\end{aligned}\\
$
$
\begin{aligned}\\
A p &=20 \log \delta_q \\\\
-2 &=20 \log \delta_7 \\\\
\therefore \delta_7 &=0.7943\\
\end{aligned}\\
$
$
\begin{aligned}\\
A_s &=20 \log \delta_2 \\\\
-10 &=20 \log \delta_2\\
\end{aligned}\\
$
$
\Omega_c=\frac{\Omega_p}{\left(1 / \delta_1^2-1\right)^{1 / 2 N}}=\\
$
$
\left(\frac{(30}{\left.1 / 0.7943^2-1\right)^{1 / 8}})\right.\\
$
$
\Omega_c=32.079 \mathrm{rad} / \mathrm{sec} \\
$
$
\begin{aligned}\\
s_{i k} &=\Omega_c e^{j \pi / 2} e^{j(2 k+1) \pi / 2 N} \\\\
&=32.079 e^{j \pi / 2} e^{j(2 k+1) \pi / 8}\\
\end{aligned}\\
$
$
\begin{aligned}\\
S_0 &=32.079 e^{j \pi / 2} e^{j \pi / 8} \\\\
&=32.079 e^{j 5 \pi / 8} \\\\
&=32.079[\cos (5 \pi / 8)+j \sin (5 \pi / 8)] \\\\
&=-12.276+j 29.637\\
\end{aligned}\\
$
$
\begin{aligned}\\
S_1 &=32.079 e^{j \pi / 2} e^{j 3 \pi / 8} \\\\
&=32.079 e^{j 7 \pi / 8} \\\\
&=32.079[\cos (7 \pi / 8)+j \sin (7 \pi / 8)] \\\\
&=-29.637+j 12.276\\
\end{aligned}\\
$
$
\begin{aligned}\\
S_3 &=32.079 e^{j \pi / 2} e^{j\gt\pi / 8} \\\\
&=32.079 e^{j \pi \pi / 8} \\\\
&=32.079[\cos (11 \pi / 8)+j \sin (11 \pi / 8)] \\\\
&=-12.276-j 29.637\\
\end{aligned}\\
$
$
\begin{aligned}\\
H(S)=& \frac{S_0 S_1 S_2 S_3}{\left(S-S_0\right)\left(S-S_1\right)\left(S-S_2\right)\left(S-S_3\right)} \\\\
=& \frac{(-12.276+j 29.637)(-12.276-j 29.637)}{[S-(-12.276+j 29.637)][S-(-12.276-j 29.637)]} \\\\
& {[S-(-29.637-j 12.276)][S-(-29.637+j 12.276)] }\\
\end{aligned}\\
$
$
\begin{aligned}\\
&=\frac{\left[(2.276)^2+(29.637)^2\right]\left[(29.637)^2+(12.276)^2\right]}{\left[(s+12.276)^2+(29.637)^2\right]\left[(s+29.637)^2+(12.276)^2\right]} \\\\
&=\frac{1.0589 \times 10^6}{\left[(5+12.276)^2+(29.637)^2\right]\left[(s+29.637)^2+(2.276)^2\right]}\\
\end{aligned}\\
$