written 2.4 years ago by |
Solution:
Here given Ωc=1.2rad/sec.
As sampling frequency is not given
Assume fs=1H2.
ωc=2Ωcfs=1.2rad/ sample.
hd[n]=12π∫π−πHd(ω)ejωndω=12π[∫−1⋅2−πejωndω+(∫jωn1⋅2dω]=12π[(ejωnjn)−1⋅2−π+(ejωnjn)π1⋅2]=12π[(e−j1⋅2n−e−jπnjn)+(ejπn−e+j⋅2njn)].
hd[n]=[(ejπn−e−jπn2πjn)−(ej−2n−e−j1.2n2πjn]hd[n]=sinπnπn−sin(1⋅2n)πn;−(N−12)⩽n⩽(N−12)
Here N=9hd[0]=limn→0sinπnπn−limn→0sin(1.2n)πn
by ⊥ Hospital Rule limQ→0sinnQQ=n
=1−1⋅2πhd[0]=0.6180hd[1]=hd[−1]=sinππ−sin(1.2)π=0−0.29667=−0.29667
hd[2]=hd[−2]=sin2π2π−sin(1.2×2)2π=−0.1075hd[3]=hd[−3]=sin3π3π−sin(1.2×3)3π=0.04695hd[4]=hd[−4]=sin4π4π−sin(1.2×4)4π∘=0.07927
Hamming Window:
WH[n]=0.54+0.46cos(2πnN−1);−(N−1)2≤n≤(N−12)
wH[0]=1
wH[1]=wH[−1]=0.54+0.46cos(2π8)=0.8652wH[2]=wH[−2]=0.54+0.46cos(4π8)=0.54
WH[3]=WH[−3]=0.54+0.46cos(6π8)=0.2147WH[4]=WH[−4]=0.54+0.46cos(8π8)=0.08
h[n]=hd[n]⋅WH[n]h[0]=hd[0]WH[0]=0.6180×1=0.6180h[−1]=h[1]=hd[1]WH[1]=(−0.29667)(0.8652)=−0.25667h[−2]=h[2]=hd[2]WH[2]=(−0.1075)(0.54)=−0.05805h[−3]=h[3]=hd[3]WH[3]=(0.04695)(0.2147)=0.01008h[−4]=h[4]=hd[4]WH[4]=(0.07927)(0.08)=0.00634
h[n]={0.00634,0.01008,−0.05805,−0.25667,0.6180,−0.25667,−0.058050.01008,0.00634}
H[z]=∞∑n=−∞h[n]z−n=∞∑n=−bh[n]z−n=−1∑n=−4h[n]z−n+h[0]+4∑n=1h[n]z−n. as h[n]=h[−n]
H[z]=h[0]+4∑n=1n[n][zn+z−n]=0.618−0.25667(z+z−1)−0.05805(z2+z−2)+0.01008(z3+z−3)+0.00634(z4+z−4]
Now to make it causal
h′[n]=h[n−6]2⟶z−4H[2]H′[2]=z−4H[2]
H′[z]=[0.618−0.2566(z+z−1)−0.5805(z2+z−2)+0.01008(z3+z−3)+0.00634(z4+z−4)]z−4