0
2.4kviews
Design a high pass filter using Hamming window with a cut-off frequency of 1.2rad/sec and number of , coefficients =9.
1 Answer
1
222views

Solution:

Here given Ωc=1.2rad/sec.

As sampling frequency is not given

Assume fs=1H2.

ωc=2Ωcfs=1.2rad/ sample. 

enter image description here

hd[n]=12πππHd(ω)ejωndω=12π[12πejωndω+(jωn12dω]=12π[(ejωnjn)12π+(ejωnjn)π12]=12π[(ej12nejπnjn)+(ejπne+j2njn)].

hd[n]=[(ejπnejπn2πjn)(ej2nej1.2n2πjn]hd[n]=sinπnπnsin(12n)πn;(N12)n(N12)

 Here N=9hd[0]=limn0sinπnπnlimn0sin(1.2n)πn

by Hospital Rule limQ0sinnQQ=n

=112πhd[0]=0.6180hd[1]=hd[1]=sinππsin(1.2)π=00.29667=0.29667

hd[2]=hd[2]=sin2π2πsin(1.2×2)2π=0.1075hd[3]=hd[3]=sin3π3πsin(1.2×3)3π=0.04695hd[4]=hd[4]=sin4π4πsin(1.2×4)4π=0.07927

Hamming Window:

WH[n]=0.54+0.46cos(2πnN1);(N1)2n(N12)

wH[0]=1

wH[1]=wH[1]=0.54+0.46cos(2π8)=0.8652wH[2]=wH[2]=0.54+0.46cos(4π8)=0.54

WH[3]=WH[3]=0.54+0.46cos(6π8)=0.2147WH[4]=WH[4]=0.54+0.46cos(8π8)=0.08

h[n]=hd[n]WH[n]h[0]=hd[0]WH[0]=0.6180×1=0.6180h[1]=h[1]=hd[1]WH[1]=(0.29667)(0.8652)=0.25667h[2]=h[2]=hd[2]WH[2]=(0.1075)(0.54)=0.05805h[3]=h[3]=hd[3]WH[3]=(0.04695)(0.2147)=0.01008h[4]=h[4]=hd[4]WH[4]=(0.07927)(0.08)=0.00634

h[n]={0.00634,0.01008,0.05805,0.25667,0.6180,0.25667,0.058050.01008,0.00634}

H[z]=n=h[n]zn=n=bh[n]zn=1n=4h[n]zn+h[0]+4n=1h[n]zn. as h[n]=h[n]

H[z]=h[0]+4n=1n[n][zn+zn]=0.6180.25667(z+z1)0.05805(z2+z2)+0.01008(z3+z3)+0.00634(z4+z4]

Now to make it causal

h[n]=h[n6]2z4H[2]H[2]=z4H[2]

H[z]=[0.6180.2566(z+z1)0.5805(z2+z2)+0.01008(z3+z3)+0.00634(z4+z4)]z4

Please log in to add an answer.