Solution:
Let H be a subgroup of the group G and $b \in H, a \in H$ then $b \in H$ ie. $b^{-1} \in H \cdot$ [Existence of inverse]
$\therefore \quad a \in H, b \in H, \quad b^{-1} \in H, a^{-1} \in H$
$\Rightarrow a b^{-1} \in H[B y$ closure property]
Coversly_:-
suppose the given condition is true in H.
$
\therefore \quad H=\phi
$
Let $a \in H$.
Therefore, Identity element exists.
Again, by the same condition -
$
\begin{aligned}\\
& e \in H, \quad a^{-1} \in H \\\\\
\Rightarrow & e a^{-1}=a^{-1}\\
\end{aligned}\\
$
ie. H is the element for every inverse element in H.
Finally, $a \in H, \quad b \in H$
ie. $a \in H, b^{-1} \in H$
So, H is closed for the operation of G.
Hence, H is a subgroup of G.