Solution:
Approach :-
we are tasked with finding the resultant force the applied racial and throsh forces on the vehicle wheel bearinges.
The cornering force acting on the entire vehicle is $\frac{m v^2}{r}$,
We wis substitute specific values to obtain a numerical result.
with w denoting the automobile's weight, each wheel carries the radios,
Solution:
$
F_R=\frac{w}{4}\\
$
The thrust force curried by one wheel is given by the expression.
$
F_r=\frac{z}{4} \frac{m v^2}{r}
$
where the velicle mass is,
$
m=\frac{w}{g}\\
$
Fence Components is.
$
\begin{aligned}\\
F &=\sqrt{F_R^2+F_T^2} \\\\
&=\frac{m}{4} \sqrt{g^2+\left(\frac{v^2}{r}\right)^2}\\
\end{aligned}\\
$
The vehicle's muss is
$
\begin{aligned}\\
m &=\frac{13.5 \times 10^3 \mathrm{~N}}{9.81 \mathrm{~m} / \mathrm{s}^2} \\\\
&=1.376 \times 10^3\left(\frac{\mathrm{kg} . \mathrm{m}}{5^2}\right)\left(\frac{5^2}{\mathrm{~m}}\right) \\\\
&=1.376 \times 10^3 \mathrm{~kg} \\
\end{aligned} \\
$
the velocity is.
$
\begin{aligned}\\
V &=\left(50 \frac{\mathrm{km}}{\mathrm{h}}\right)\left(10^3 \frac{\mathrm{m}}{\mathrm{km}}\right)\left(\frac{1}\\{3600} \frac{\mathrm{h}}{\mathrm{s}}\right) \\\\
&=13.89\left(\frac{\mathrm{km}}{\mathrm{h}}\right)\left(\frac{\mathrm{m}}\\{\mathrm{km}}\right)\left(\frac{\mathrm{h}}{\mathrm{s}}\right) \\\\
&=13.89 \frac{\mathrm{m}}{\mathrm{s}}\\
\end{aligned}\\
$
The resiltunt force acting on a whee's beering is,
$
F=\left(\frac{1.376 \times 10^3 \mathrm{~kg}}{4}\right)\\
$
$
\sqrt{\left(9.81 \frac{m}{s^2}\right)^2+\left(\frac{(3.84 m / g}{60 m}\right)^2} \\
$
$
\begin{aligned}
&=3551 \frac{\mathrm{k} 9 . \mathrm{m}}{\mathrm{s}^2} \\
F &=3.551 \mathrm{kN}
\end{aligned}
$