Solution:
Approdch:-
we will calculate the merss $\mathrm{m}$, weight w, and the gravitational acceleration
$
g=32.2 \mathrm{ft} / \mathrm{s}^2 \\
$.
The expression $w=m g$,
we will then Convert from slugs to lbm Using the Conversion factor 1 slug
$
=32.1 \neq 4 \mathrm{~J} \mathrm{bm} \\
$
$
1 \text { slug }=14.59 \mathrm{~kg}\\
$
Solution:-
(a) we first determent the mass of the fuel in the unit of slugs:
$
\begin{aligned}
m &=\frac{w}{g} \\
m &=\frac{3.65 \times 10^5 \mathrm{lb}}{32.2 \mathrm{ft}^2 \mathrm{~/s}^2} \\
&=1.234 \times 10^4 \frac{\mathrm{lb} \mathrm{s}^2}{\mathrm{ft}} \\
m &=1.134 \times 10^4 \mathrm{slugs}
\end{aligned}
$
(b) we Convert the mass quantity $1.134 \times 10^4$ slugs into the units of $\mathrm{kg}$ in the SI:
$
\begin{aligned}\\
m &=\left(1.134 \times 10^4 \text { slugg }\right)\left(24.59 \frac{\mathrm{kg}}{5 \mathrm{lug}}\right) \\\\
&=1.655 \times 10^5(5 \text { lugs })\left(\frac{\mathrm{kg}}{5 \operatorname{lug}}\right) \\\\
&=1.655 \times 10^5 \mathrm{~kg}\\
\end{aligned}\\
$
we first write
$
m=165.5 \times 10^3 \mathrm{~kg}\\
$
since kilo prefix alrealy implies of
$
10^3 \mathrm{~g} \\
$
$
m=165.5 \times 20^6 \mathrm{~g} \\
$
The fuel weight in the SI is:
$
\begin{aligned}\\
w &=\left(1.655 \times 10^5 \mathrm{~kg}\right)\left(9.81 \mathrm{~ms}^{-2}\right)\\ \\
&=1.62 \times 10^6 \frac{\mathrm{kg} . \mathrm{m}}{\mathrm{s}^2} \\\\
&=1.62 \times 10^6 \mathrm{~N}\\
\end{aligned}\\
$
Discussion:-
To double-check the coalition of weight in the SI, By using the Conversion factor
$
1 \mathrm{lb}=4.448 \mathrm{~N} \\
$
$
\begin{aligned}\\
w &=\left(3.65 \times 10^5 1 b\right)\left(4.448 \mathrm{NJb}^{-1}\right) \\\\
&=1.62 \times 10^6(1 b)\left(\frac{\mathrm{N}}{\mathrm{lb}}\right) \\\\
w &=1.62 \times 10^6 \mathrm{~N} \\
\end{aligned} \\
$