Solution:
The power dimension $m w$,
The Conversion factors for power and Length are $1 \mathrm{kw}=1.34 \mathrm{hp}$ $1 \mathrm{~m}=39.37$
$
1 m=39.37 \text {. } \\
$
Solution :-
(a) we first Convert the power's sI prifix, The laser produces $3 \times 10^{-3} \mathrm{w}=3 \times 10^{-6} \mathrm{kw}$.
$
\begin{aligned}\\
P &=\left(3 \times 10^{-6} \mathrm{kw}\right)\left(2.34 z \frac{h p}{\mathrm{kw}}\right) \\\\
&\left.=4,023 \times 10^{-6} / \mathrm{kw}\right)\left(\frac{\mathrm{hp}}{\mathrm{kw}}\right) \\\\
P &=4,023 \times 10^{-6} \mathrm{hp} \\
\end{aligned} \\
$
(b) The Laser's wavelength is $632.8 \times 10^{-9} \mathrm{~m}=6.328 \times 10^{-7} \mathrm{~m}$, and the length Conversion becomes.
$
\begin{aligned}\\
\lambda &=\left(6.328 \times 10^{-7} \mathrm{~m}\right)\left(39.37 \frac{\mathrm{im}}{\mathrm{m}}\right) \\\\
&\left.=2.491 \times 10^{-5} \mathrm{~m}\right)\left(\frac{\mathrm{In} .}{\mathrm{m}}\right) \\\\
&=2.491 \times 10^{-5} \mathrm{in} \\
\end{aligned}\\
$
Discussion:-
So, larger than the Jaser's power and wavelength, they are not veey Convenient for describing its char.
$
\begin{aligned}\\
&p=4,023 \times 10^{-6} \mathrm{hp} . \\\\
&x=2.491 \times 10^{-5} \mathrm{in} .\\
\end{aligned}\\
$