Solution:
center frequency of filter $=2.4 \mathrm{GH} 2$
Bandwidth requicement of filter $=20 \%$
$\%$ Bandwidth of filter $=\frac{\text { upper freq. limit - lower freq. limit }}{\text { center frequeacy }} \times 100$
$
\begin{aligned}\\
&\therefore \quad 20=\frac{\mathrm{Fu}-\mathrm{Fl}}{\mathrm{fc}} \times 100\\\\
&\therefore \frac{f_u-f_l}{f_c}=0.2\\\\
&\therefore \mathrm{fu}-\mathrm{fl}=0.2 \mathrm{fe}=0.2 \times 2.4 \mathrm{GH}=0.48 \mathrm{GH}_2\\\\
&\therefore \mathrm{F}_4-\mathrm{Fl}=0.48 \mathrm{GH}\\\\
&\therefore \quad \mathrm{Fu}+\frac{0.484 \mathrm{~Hz}}{2}=\text { uppertimit }\\\\
&\therefore \quad \mathrm{fu}=2.49 \mathrm{H}_2+\frac{0.48 \mathrm{GH}}{2}=2.64 \mathrm{GHz}\\\\
&\mathrm{Fl}=2.4 \mathrm{GHz}-\frac{0.48 \mathrm{HHz}}{2}=2.16 \mathrm{GHz}\\
\end{aligned}\\
$
$
\therefore \% B W=\frac{f 4-f l}{f c} \times 100=\frac{2.649 \mathrm{H}_2-2.164 \mathrm{HL}}{2.4 \mathrm{GH}} \times 100=20 \% \\
$
so,
lower frequency limit of $B P F=\mathrm{Fl}=2.16 \mathrm{GHz}$
upper frequency limit of $B P F=F u=2.64 G \mathrm{~Hz}$
Ripple magnitude in passband $=G R=3 d B$
$z_G=z_L=50 \Omega$
Design of Low Pass filter prototype:
order of filter $=N=3$
For Chebyshev filter of older $N=3$ with ripple of $3 d B$ value, Filter root values from table,
$
\begin{aligned} \\
&g_0=1 \\\\
&g_1=3.3487 \\\\
&g_2=0.7117 \\\\
&g_8=3.3487 \\\\
&g_4=1 \\
\end{aligned} \\
$
$g_1 \& g_3$ will provide inductor while $g_2$ will provide capacitor.
$
\begin{aligned}\\
&X_L=g_1=g_3=3.3487 \quad X C=\frac{1}{g_2}=\frac{1}{0.7117}=1.405 \\\\
&X_L=2 \pi F L \text { with } F=F_C=\text { lowel fieq.limit }=2.16 \mathrm{GH} \\\\
&\therefore L=\frac{X_L}{2 \pi F_c} \times Z_0 \\\\
&\therefore L=\frac{3.3487}{2 \pi \times 2.16 \times 10^9} \times 50=12.3 \mathrm{nH}\\
\end{aligned}\\
$
$
\begin{aligned} \\
&x_c=\frac{1}{2 \pi \mathrm{fc}} \text { with } f=f_c=10 \text { wel freq. limit }=2.16 \mathrm{GHz} \\\\
&\therefore c=\frac{1}{2 \pi \mathrm{fc}_{\mathrm{c}} \mathrm{H}_c} \times \frac{1}{20}=\frac{1}{2 \pi \times 2.16 \times 10^9 \times 1.405} \times \frac{1}{50}=1.048 \mathrm{PF}\\
\end{aligned}\\
$
$
\text { The low pass ' } T \text { ' section filter prototype is as below, }\\
$
$
\begin{aligned}\\
&\text { Design of Bandpass filter: }\\\\
&\begin{aligned}\\\\
f_0=\sqrt{f u \times f l}=\sqrt{(2.64 \times 2.16) \times 10^9 \times 10^9} &=2.387 \times 10^9 \mathrm{HH}_2 \\\\
&=2.387 \mathrm{GHL}\\
\end{aligned}\\\\
&g_L=g_1=g_3=3.3487, \quad g_c=g_2=0.7117\\
\end{aligned}\\
$
$
\begin{aligned} \\
&\omega_u=2 \pi \mathrm{Fu}_u=2 \pi \times 2.64 \mathrm{GHz}=16.59 \mathrm{GH} \\\\
&\omega_l=2 \pi \mathrm{Fl}=2 \pi \times 2.16 \mathrm{GHz}=13.57 \mathrm{GHz} \\\\
&\omega_0=\sqrt{\omega_u \times \omega_l}=\sqrt{16.59 \times 13.57} \mathrm{GHz}=15 \mathrm{GHz} \\\\
&\therefore C_{B P_1}=\frac{\omega_u-\omega l}{\omega_0^2 \times g \mathrm{~L}}=\frac{16.59 GHz-13.57GHz \mathrm{}}{\left(15 \mathrm{HH}_2\right)^2 \times 3.57 \mathrm{GHz}} \\\\
&C_{B P_1}=\frac{(16.59-13.57) \times 10^9}{\left(15 \times 10^9\right)^2 \times 3.3487}=4 \mathrm{PF}\\
\end{aligned}\\
$
$
\begin{aligned}\\
&C B P_1=\frac{(16.59-13.57) \times 10^9}{\left(15 \times 10^9\right)^2 \times 3.3487}=4 \mathrm{PF}\\\\
&L_{B P_1}=\frac{g_L}{\omega u-\omega d}=\frac{3.3487}{(16.59-13.57) \times 10^9}=1.1 \mathrm{nH}\\\\
&L_{B P_2}=\frac{w_4-w l}{w_0^2 g_c}=\frac{(16.59-13.57) \times 10^9}{\left(15 \times 10^9\right)^2 \times 0.7117}=18.85 \mathrm{PH}\\\\
&C_{B P_2}=\frac{g_c}{w_u-w_l}=\frac{0.7117}{(16.59-13.57) \times 10^9}=0.235 \mathrm{nF}\\
\end{aligned}\\
$
$
\begin{aligned} \\
&\text { Scaliug capacitors \& inductors: } \\\\
&C_{B P_1}=\frac{C B P_1}{50}=\frac{4 P F}{50}=0.08 \mathrm{PF} \\\\
&L_{B P_1}=L_{B P_1 \times 50}=1.1 \mathrm{nH} \times 50=55 \mathrm{nH} \\\\
&L B P_2=L_{B P_2} \times 50=18.85 \mathrm{PH} \times 50=942.5 \mathrm{PH}=0.94 \mathrm{nH} \\\\
&C_{B P_2}=\frac{C B P_2}{50}=\frac{0.235 \mathrm{nF}}{50}=4.7 \times 10^{-12}=4.7 \mathrm{PF} \\
\end{aligned} \\
$
Replacing series arm of low pass filter (inductor) with series combination of $L B P_1 \&{ }C B P_1$ and parallel aim of low pass filter (capacitor) with parallel combination of $L B P_2 \& C B P_2$ we get desired band pass filter.