written 2.1 years ago by | • modified 2.1 years ago |
The switch is closed at $t=0$, find values of $i(t):
written 2.1 years ago by | • modified 2.1 years ago |
The switch is closed at $t=0$, find values of $i(t):
written 2.1 years ago by |
Solution:
$\because$ All initial conditions are zero $\therefore I_L(\overline{0})=I_0=0$ Amp ckt at $t=0^{+}$
Apply KVL to loop
$ \begin{gathered} \\ 100-10 i(t)-1 \cdot \frac{d i(t)}{d t}=0...(1) \\\\ \text { put } t=0^{+}: \frac{d i\left(0^{+}\right)}{d t}=0 \\\\ 100-10 i\left(0^{+}\right)-\frac{d i\left(0^{+}\right)}{d t}=100 \quad \text { A/s } \\ \end{gathered} \\ $
Differentiating $e q-n$ (1)
$$ 0-10 \frac{d i(t)}{d t}-\frac{d^2 i(t)}{d t^2}=0 \\ $$
$$put$$
$$ t=0^{+} \\\ $$
$$ -10 \frac{d i\left(0^{+}\right)}{d t}-\frac{d^2 i\left(0^{+}\right)}{d t^2}=0 \\ $$
$$ -10(100)=\frac{d^2 c\left(0^{+}\right)}{d t^2} \\ $$
$$ \frac{d^2 i\left(0^{+}\right)}{d t^2}=-1000 \mathrm{~A} / \mathrm{s}^2 \\ $$