0
451views
Check for Hurwitz polynomial $ \begin{aligned} \\ &Q(S)=S^5+S^3+S^1 \\\\ &Q(S)=S^4+6 S^3+8 S^2+10 \\ \end{aligned} \\ $
1 Answer
0
12views
written 2.2 years ago by |
Solution:
i)
$Q(S)=S^5+s^3+s^1$
$Q^1(s)=5 s^4+3 s^2+1$
Using Routh Array method
$ \begin{array}{c|ccc} s^5 & 1 & 1 & 1 \\\\ \hline S^4 & 5 & 3 & 1 \\\\ \hline S^3 & 2 / 5 & 4 / 5 & \\\\ \hline s^2 & -7 & & \\\\ \hline s^1 & & \\\\ \hline s^0 & & \\\\ \end{array} \\ $
$\because$ first element in row of. $s^2$ is -ve. It is not Hurwitz's polynomial.
ii) $ Q(s)=s^4+6 s^3+8 s^2+10 $
$ \begin{aligned} \\ &m(s)=s^4+8 S^2 \\\\ &n(s)=6 S^3+10 \\ \end{aligned} \\ $
Using Routh array method
$ \begin{array}{c|cc} s^4 & 1 & 8 \\\\ \hline s^3 & 6 & 10 \\\\ \hline s^2 & 6.33 & \\\\ \hline s^1 & \\\\ \hline s^0 & & \\\\ \end{array} \\ $
In given $Q(s)$ $s^1$ term is missing. Hence It is not Hurwitz's polynomial.
ADD COMMENT
EDIT
Please log in to add an answer.