0
784views
The network shown in fig. has attained a steady state with the switch closed for $t<0$. At $t=0$, the switch is opened. obtain $i(t)$ for $t>0$
1 Answer
written 2.1 years ago by |
Solution:
$ \text { Draw ckt. for time } t\lt0 \quad[t=\overline{0}] $
Using $ C \cdot D \cdot R \\ $.
$ \begin{aligned} \\ I_0 =\frac{(3.6)(2.857)}{2.857+4} \\\\ I_0=1.5 \text { Amp } \\ \end{aligned} \\ $
$ \text { Draw ckt. for time } t\gt0 \\ $
This is simple R-L ckt. Hence current through inductor is given by
$ \begin{aligned} \\ i(t) &=I_0 \cdot e^{-\frac{R}{L} \cdot t} \\\\ &=1 \cdot 5 \cdot e^{-\frac{8}{2} t} \\\\ i(t) &=1 \cdot 5 \cdot e^{-4 t} \text { Amp. } \\ \end{aligned} \\ $