Solution:
Resolving forces horizontally and vertically at the points A, B, and C respectively, we get
$
\begin{aligned}
&T \cos \alpha=R_{1} \sin \gamma....(i) \\\\
&T_{1} \sin \alpha+W_{1}=R_{1} \cos \gamma...(ii) \\\\
&T_{1} \cos \beta=R_{2} \sin \gamma...(iii) \\\\
&T_{2} \sin \beta+W_{2}=R_{2} \cos \gamma...(iv) \\\\
&T_{1} \cos \alpha=T_{2} \cos \beta...(v) \\\\
&T_{1} \sin \alpha+T_{2} \sin \beta=W......(vi) \\
\end{aligned}
$
Using (v), from (i)and (ii), we get,
$
R_{1}=R_{2} \\
$
$\therefore$ From (ii) and (vi), we have,
$
T_{1} \sin \alpha+W_{1}=T_{2} \sin \beta+W_{2} \\
$
or,
$
T_{1} \sin \alpha-T_{2} \sin \beta=W_{2}-W_{1} \\
$
Adding and subtracting (vi) and (vii), we get,
$
2 T_{1} \sin \alpha=W+W_{2}-W_{1} \\
$
$
2 T_{2} \sin \beta=W-W_{2}+W_{1} \\
$
Dividing (viii) by (ix), we get,
$
\frac{T_{1}}{T_{2}} \cdot \frac{\sin \alpha}{\sin \beta}=\frac{W-W_{1}+W_{2}}{W+W_{1}-W_{2}} \quad \\
$
or
$
\frac{\cos \beta}{\cos \alpha} \cdot \frac{\sin \alpha}{\sin \beta}=\frac{W-W_{1}+W_{2}}{W+W_{1}-W_{2}} \quad($ from $(\mathrm{v})) \quad \\
$
or
$
\frac{\tan \alpha}{\tan \beta}=\frac{W-W_{1}+W_{2}}{W+W_{1}-W_{2}} \\
$