Solution :
Here conversion in case of both spherical particles is complete ($\mathrm {X_B}=1$) so the time given is $\tau $
For $\mathrm {dp_1=1~mm, \quad \tau_1=t_1=200~s}$
For $\mathrm{ dp_1=1.5~mm, \quad \tau_2=t_2=450~s}$
1) Film diffusion controls :
We have $\mathrm {\tau \propto R}$
$\mathrm {r_{1} \propto R_{1}}$ and $\tau_{2} \propto \mathrm R_{2}$
$$\begin {aligned}\frac{\tau_{1}}{\tau_{2}} &=\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\frac{(\mathrm{dp}_1)}{\left(\mathrm{~dp}_{2}\right)}\\
\mathrm {LHS }:~\quad \frac{\tau_{1}}{\tau_{2}}&=\frac{200}{450}=0.444 \\
\mathrm {RHS }:\quad \frac{R_{1}}{R_{2}}&=\frac{d p_{1}}{d p_{2}}=\frac{1}{1.5}=0.667
\end {aligned}$$
LHS not equal to RHS
$\therefore$ Film diffusion does not control the rate.
2) Ash diffusion controls :
We have $\tau \propto \mathrm{R}^{2}$
$\tau_{1} \propto \mathrm{R}_{1}^{2}$ and $\tau_{2} \propto \mathrm{R}_{2}^{2}$
$$\begin {aligned}\frac{\tau_{1}}{\tau_{2}} &=\frac{\mathrm{R}_{1}^{2}}{\mathrm{R}_{2}^{2}}=\frac{(\mathrm{dp_1})^{2}}{\left(\mathrm{~dp}_{2}\right)^{2}} \\
\mathrm{LHS : } \quad ~\frac{\tau_{1}}{\tau_{2}} &=\frac{200}{450}=0.444 \\
\mathrm{ RHS : }\quad \frac{\mathrm R_{1}^{2}}{\mathrm R_{2}^{2}} &=\frac{\left(\mathrm {d p_{1}}\right)^{2}}{\left(\mathrm {d p_{2}}\right)^{2}}=\frac{(1)^{2}}{(1.5)^{2}}=0.444
\end{aligned}$$
LHS = RHS
Ash diffusion controls the rate of transformation of solid.
3) Chemical reaction controls :
We have again $\tau \propto \mathrm{R}$ as that with film diffusion obtain the same results as that for film diffusion.
So chemical reaction does not control the rate.