Solution:
Let $A, B, C$ denote the set of students studying mathematics, physics and biology respectively.
$
\begin{aligned}
|X| &=100 \\\\
|A| &=32 \\\\
|D| &=20 \\\\
|C| &=45 \\\\
|A \cap C| &=15 \\\\
|A \cap B| &=7 \\\\
|B \cap C| &=10 \\\\
\left|A^{\prime} \cap B^{\prime} \cap C^{\prime}\right| &=30 \\\\
\left|A^{\prime} \cap B^{\prime} \cap C^{\prime}\right| &=100-\mid A \cup B \cup C \\\\
\text { Dr }|A \cup B \cup C| &=100-30 \\\\
&=70 \\
\end{aligned}
$
a) number of students staying in all three subjects.
$
\begin{aligned}
|A \cup B \cup C| &=|A|+|B|+|C|-|| A \cap B|+| A \cap C|+| B \cap C||+|A \cap B \cap C| \\\\
70 &=32+20+45-[7+15+10|+| A \cap B \cap C \\\\
70 &=97-|32|+|A \cap B \cap C| \\\\
70-65 &=|A \cap B \cap C| \\\\
\Rightarrow|A \cap B \cap C| &=5 \\
\end{aligned}
$
5 students study all 3 subjects.
b) Number of students studying exactly one subject.
The number of students studying only mathematics is,
$
\begin{aligned}
A|-| A \cap B|-| A \cap C|+| A \cap B \cap C \mid \\\\
&=32-7-15+5 \\\\
&=15 \\
\end{aligned}
$
Number of students studying only physics is,
$
\begin{aligned}
|B|-|B \cap A|-|B \cap C|+|A \cap B \cap C| \\\\
&=20-7-10+5 \\\\
&=8 \\
\end{aligned}
$
The number of students studying only biology is,
$
\begin{aligned}
|C|-|A \cap C|-|B \cap C|+|A \cap B \cap C| \\\\
&=45-15-10+5 \\\\
&=25 \\
\end{aligned}
$
$\therefore$ Number of students studying exactly one subject,
$
=15+8+25=48
$