written 2.9 years ago by |
Solution:
Suppose set A denotes the number of integers between 1 to 2000 divisible by 2.
Set B is the number of integers between 1 and 2000 divisible by 3.
Set C is the number of integers between 1 and 2000 divisible by 5.
Set D is the number of integers between 1 and 2000 divisible by 7.
|A|=[20002]=1000
|B|=[20003]=666
|C|=[20005]=400
|D|=[20007]=285
|A∩B|=[20002×3]=333
|A∩C|=[20002×5]=200
|A∩D|=[20002×7]=142
|B∩C|=[20003×5]=133
|B∩D|=[20003×7]=95
|C∩D|=[20005×7]=57
|A∩B∩C|=[20002×3×5]=66
|A∩B∩D|=[20002×3×7]=47
|A∩C∩D|=[20902×5×7]=28
|B∩C∩D|=[20903×5×7]=19
|A∩B∩C∩D|=[20002×3×5×7]=9
Number of elements divisible by 2 or 3 or 5 or 7 are |A∪B∪C∪D|.
From inclusion-exclusion principle
|A∪B∪C∪D|=|A|+|B|+|C|+|D|−||A∩B|+|B∩C|+|A∩C|+|A∩D|+|B∩D|+|C∩D∣]+||A∩B∩C|+|A∩B∩D|+|A∩C∩D|+|B∩C∩D∣]−||A∩B∩C∩D∣]∴|A∪B∪C∪D|=1000+666+400+285−[333+200+142+133+95+57]+[66+47+28+19]−9=2351−960+160−9=1542