Solution:
Let $X=\{0,1,2,3,4,5\}$.
The operation * on $\mathrm{X}$ is defined as:
$a * b= \begin{cases}a+b & \text { if } a+b\lt6 \\\\ a+b-6 & \text { if } a+b \geq 6\end{cases}$
An element $e \in X$ is the identity element for the operation *, if $a * e=a=e * a \forall a \in X$.
For $a \in X$, we observed that:
$
\begin{aligned}
&a * 0=a+0=a \quad[a \in X \Rightarrow a+0\lt6] \\\\
&0 * a=0+a=a \quad[a \in X \Rightarrow 0+a\lt6] \\\\
&\therefore a * 0=a=0 * a \forall a \in X \\
\end{aligned}
$
Thus, 0 is the identity element for the given operation *.
An element $a \in X$ is invertible if there exists $b \in X$ such that $a * b=0=b * a$.
i.e., $\begin{cases}a+b=0=b+a, & \text { if } a+b\lt6 \\\\ a+b-6=0=b+a-6, & \text { if } a+b \geq 6\end{cases}$
i.e.,
$a=-b$ or $b=6-a$
But, $X=\{0,1,2,3,4,5\}$ and $a, b \in X$. Then, $a \neq-b$.
$\therefore b=6-a$ is the inverse of $a \square a \in X$.
Hence, the inverse of an element $a \in X, a \neq 0$ is $6-a$ i.e., $a^{-1}=6-a$.