written 2.7 years ago by | • modified 2.7 years ago |
On doubling the concentration of reactant, the rate of reaction triples. Find the reaction order.
$$\mathrm {-r_A=k~C^n_A}$$
written 2.7 years ago by | • modified 2.7 years ago |
On doubling the concentration of reactant, the rate of reaction triples. Find the reaction order.
$$\mathrm {-r_A=k~C^n_A}$$
written 2.7 years ago by |
Solution :
At $\mathrm{C}_{\mathrm{A1}}$, the rate is
$$ -\mathrm {\mathrm r_{A1}=k C_{A1}^{n}} $$
At $\mathrm{C}_{\mathrm{A} 2}$, the rate is
$$-\mathrm{r}_{\mathrm{A2}}=\mathrm{kC}_{\mathrm{A2}}^{\mathrm{n}}$$
If $$-r_{\mathrm{A}_{2}}=\mathrm{kC}_{\mathrm{A} 2}^{\mathrm{n}}$$
$$\mathrm {C_{A2}}=2 \mathrm {C_{A1}}$$. we have
$$\mathrm{-r_{A2}=3\left(-r_{A1}\right)}$$
$$\mathrm {\frac{-r_{A 2}}{-r_{A 1}}=\frac{k C_{A 2}^{n}}{k C_{A 1}^{n}}}$$
$$\mathrm{\frac{-r_{A 2}}{-r_{A 1}}=\frac{C_{A 2}^{n}}{C_{A 1}^{n}}}$$
$$\frac{3\left(\mathrm{-r_{A 1}}\right)}{\mathrm{-r_{A 1}}}=\frac{\left(2\mathrm {C_{A 1}}\right)^{\mathrm n}}{\left(\mathrm {C_{A 1}}\right)^{\mathrm n}}$$
$$\mathrm {3=2^n}$$
$$\ln 3=\mathrm{n} \ln 2 $$
$$1.0986=\mathrm{n}(0.693)$$
$$\mathrm n=1.6$$