Solution :
The homogeneous decomposition of ozone proceeds as
$$
2 \mathrm{O}_{3} \rightarrow 2 \mathrm{O}_{2}
$$
and follows the rate law
$$
-\mathrm{r}_{\mathrm O_{3}}=\mathrm k\left[\mathrm{O}_{3}\right]^{2}\left[\mathrm{O}_{2}\right]^{-1}
$$
The two-step mechanism, consistent with the rate, suggested is
Step 1: (fast, at equilibrium)
$$\mathrm{O}_{3} \underset{\mathrm{k}_{2}}{\stackrel{\mathrm{k}_{1}}{\rightleftharpoons}} \mathrm{O}_{2}+\mathrm{O} \quad$$
Step 2: (slow)
$$\quad \mathrm{O}+\mathrm{O}_{3} \stackrel{\mathrm{k}_{3}}{\longrightarrow} 2 \mathrm{O}_{2} \quad$$
The step 2 is the slower, rate determining step and accordingly, the reaction rate is given by,
$$
-\mathrm{r}_{\mathrm{O}_{3}}=\frac{-\mathrm{d}\left[\mathrm{O}_{3}\right]}{\mathrm{dt}}=\mathrm{k}_{3}\left[\mathrm{O}_{3}\right][\mathrm O] ...(i)
$$
The step 1 is fast and reversible. For this equilibrium step, we have
$$
\begin{aligned}
\mathrm{K} &=\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}=\frac{\left[\mathrm{O}_{2}\right][\mathrm{O}]}{\left[\mathrm{O}_{3}\right]} \\
{[\mathrm{O}] } &=\mathrm{K}\left[\mathrm{O}_{3}\right] /\left[\mathrm{O}_{2}\right] ...(ii)
\end{aligned}
$$
Putting value of $[\mathrm O]$ from equation (ii) into equation (i), we get,
Let
$$
\begin{aligned}
-\mathrm{r}_{\mathrm{O}_{3}} &=\frac{-\mathrm{d}\left[\mathrm{O}_{3}\right]}{\mathrm{dt}}=\mathrm{k}_{3} \cdot \mathrm{K}\left[\mathrm{O}_{3}\right]^{2} /\left[\mathrm{O}_{2}\right] \\
\mathrm{k} &=\mathrm{k}_{3} \mathrm{~K} \\
-\mathrm{r}_{\mathrm{O}_{3}} &=\mathrm{k}\left[\mathrm{O}_{3}\right]^{2}\left[\mathrm{O}_{2}\right]^{-1} \\
\end{aligned}
$$
Overall order of reaction is 2-1=1