written 2.6 years ago by | • modified 2.6 years ago |
Solution:
It is given that $f: \mathbf{R} \rightarrow \mathbf{R}$ is defined as $f(x)=10 x+7 .$
One-one:
Let $f(x)=f(y)$, where $x, y \in \mathbf{R}$.
$ \Rightarrow 10 x+7=10 y+7 \\ $
$ \Rightarrow x=y \\ $
$\therefore f$ is a one-one function.
Onto:
For $ y \in \mathbf{R} \\ $
let $ y=10 x+7 \\ $.
$ \Rightarrow x=\frac{y-7}{10} \in \mathbf{R} \\ $ Therefore, for any $y \in \mathbf{R}$, there exists $x=\frac{y-7}{10} \in \mathbf{R}$
such that, $ f(x)=f\left(\frac{y-7}{10}\right)=10\left(\frac{y-7}{10}\right)+7=y-7+7=y . \\ $
$\therefore f$ is onto.
Therefore, f is one-one and onto.
Thus, f is an invertible function.
Let us define,
$ g: \mathbf{R} \rightarrow \mathbf{R} \\ $
as
$ g(y)=\frac{y-7}{10} \\ $.
Now, we have:
$ g \circ f(x)=g(f(x))=g(10 x+7)=\frac{(10 x+7)-7}{10}=\frac{10 x}{10}=10 \\ $
And,
$ \begin{aligned} &f \circ g(y)=f(g(y))=f\left(\frac{y-7}{10}\right)=10\left(\frac{y-7}{10}\right)+7=y-7+7=y \\\\ &\therefore g \circ f=\mathrm{I}_{\mathbf{R}} \text { and } f \circ g=\mathrm{I}_{\mathbf{R}} \\ \end{aligned} $
Hence, the required function $ g: \mathbf{R} \rightarrow \mathbf{R} \\ $ is defined as $ g(y)=\frac{y-7}{10} \\ $