written 2.9 years ago by
RakeshBhuse
• 3.2k
|
•
modified 2.9 years ago
|
Solution :
Given :
r2=10 r1
T2=400 K,T2=500 K,T3=600 K
R=1.987 cal/(mol.K)
(a) From Arrhenius law
$$
\begin{aligned}
\ln (\mathrm{r}) &=-\frac{\mathrm{E}}{\mathrm{RT}}+\ln \mathrm{k}_{0} \\
\ln \left(\mathrm{r}_{2}/\mathrm{r}_{\mathrm{1}}\right)&=-\frac{\mathrm{E}}{\mathrm{R}}\left[\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right] \\
\ln \left(\mathrm{r}_{2} /\mathrm{r}_{1}\right) &=\frac{\mathrm{E}}{\mathrm{R}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right]\\
\ln \left(10 r_{1}/r_{1}\right)&=\frac{\mathrm{E}}{1.987}\left[\frac{1}{400}-\frac{1}{500}\right]\\
\mathrm E &= 9150 \mathrm {~cal/mol}
\end{aligned} …
Create a free account to keep reading this post.
and 3 others joined a min ago.