written 2.6 years ago by
RakeshBhuse
• 3.2k
|
•
modified 2.6 years ago
|
Solution :
Given :
$\mathrm {r_{2}=10 ~r_{1}} $
$\mathrm T_{2}=400 \mathrm{~K}, \mathrm T_{2}=500 \mathrm{~K}, \mathrm T_3=600~\mathrm K$
$\mathrm{R} =1.987 \mathrm{~cal} /(\mathrm{mol}.\mathrm{K}) $
(a) From Arrhenius law
$$
\begin{aligned}
\ln (\mathrm{r}) &=-\frac{\mathrm{E}}{\mathrm{RT}}+\ln \mathrm{k}_{0} \\
\ln \left(\mathrm{r}_{2}/\mathrm{r}_{\mathrm{1}}\right)&=-\frac{\mathrm{E}}{\mathrm{R}}\left[\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right] \\
\ln \left(\mathrm{r}_{2} /\mathrm{r}_{1}\right) &=\frac{\mathrm{E}}{\mathrm{R}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right]\\
\ln \left(10 r_{1}/r_{1}\right)&=\frac{\mathrm{E}}{1.987}\left[\frac{1}{400}-\frac{1}{500}\right]\\
\mathrm E &= 9150 \mathrm {~cal/mol}
\end{aligned}
$$
(b) From collision theory
$$\begin{aligned}
\mathrm k &=\mathrm T^{\mathrm{1/2}}.\mathrm{{e}^{-E/RT}} \\
\mathrm r &=\mathrm k'_{o} \mathrm T^{1/2}.\mathrm{{e}^{-E/RT}}\\
\ln \mathrm r &=-\frac{\mathrm{E}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}}\right)+\ln \mathrm{T}^{1/2}+\ln \mathrm{k}_{o}^{\prime}\\
\ln \mathrm r_{1} &=-\frac{E}{R}\left(\frac{1}{\mathrm T_{1}}\right)+\ln \mathrm T_{1}^{1/2}+\ln \mathrm k_{o}^{\prime}\\
\ln \mathrm r_{2} &=-\mathrm {\frac{E}{R}}\left(\frac{1}{\mathrm T_{2}}\right)+\ln \mathrm T_{2}^{1/2}+\ln \mathrm k_{o}^{\prime}\\
\ln \left(\mathrm{r}_{2} /\mathrm r_{1}\right) &=\frac{\mathrm{E}}{\mathrm{R}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right]+\ln \left(\frac{\mathrm{T}_{2}^{1 / 2}}{\mathrm{~T}_{1}^{1/2}}\right)\\
\ln \left(10\mathrm r_{1} / \mathrm r_{1} \right) &=\frac{ \mathrm{E}}{1.987}\left[\frac{1}{400}-\frac{1}{500}\right]+\ln \left[\frac{(500)^{1 / 2}}{(400)^{1/2}}\right]\\
\mathrm{E} &=8707 \mathrm{~cal} / \mathrm{mol}
\end{aligned}$$
(c) Difference in two methods
From Arrhenius law
$$\begin {aligned}\ln \left(\mathrm{r}_{3} / \mathrm{r}_{2}\right) &=\frac{\mathrm{E}}{\mathrm{R}}\left[\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{3}}\right]\\
\ln \mathrm {\left(r_3 / r_{2}\right) }&=\frac{9150}{1.987}\left[\frac{1}{500}-\frac{1}{600}\right]\\
\mathrm {r_{3} / r_{2}} &=4.64~\therefore \mathrm r_{3}=4.64 ~\mathrm r_{2}
\end{aligned}$$
From Collision theory :
$$
\begin{aligned}
\ln \left(\mathrm r_{3} / \mathrm r_{2}\right) &=\mathrm {\frac{E}{\mathrm{R}}\left[\frac{1}{T_{2}}-\frac{1}{T_{2}}\right]}+\ln \mathrm {\left(\frac{T_{3}^{1 / 2}}{T_{2}^{1 / 2}}\right)} \\
\ln \mathrm {\left(r_{3} / r_{2}\right) }&=\frac{8707}{1.987}\left[\frac{1}{500}-\frac{1}{600}\right]+\ln \left[\frac{(600)^{1/2}}{{(500)^{1 / 2}}}\right]\\
\mathrm r_{3} / \mathrm r_{2} &=4.72 \\
\mathrm r_{3} &=4.72 \mathrm r_{2}
\end{aligned}
$$
From Arrhenius law , $\mathrm r_{3} =4.64 \mathrm{r}_{2} $
From collision theory , $\mathrm r_{3} =4.72 \mathrm r_{2}$
The % difference in rates,
$$ =\frac{(4.72-4.64)\mathrm r_2}{4.72}×100$$
The rate of reaction from Collision theory is $1.7 \%$ more than it is given by Arrhenius law.