2
4.8kviews
At 500 K the rate of a bimolecular reaction is ten times the rate at 400 K. Find the activation energy for this reaction (a) from Arrhenius law, (b) from collision theory, (c) what is the perce

At 500 K the rate of a bimolecular reaction is ten times the rate at 400 K. Find the activation energy for this reaction

(a) from Arrhenius law,

(b) from collision theory,

(c) what is the percentage difference in rate of reaction at 600 K predicted by these two methods ?

1 Answer
1
489views

Solution :

Given :

r2=10 r1

T2=400 K,T2=500 K,T3=600 K

R=1.987 cal/(mol.K)

(a) From Arrhenius law

$$ \begin{aligned} \ln (\mathrm{r}) &=-\frac{\mathrm{E}}{\mathrm{RT}}+\ln \mathrm{k}_{0} \\ \ln \left(\mathrm{r}_{2}/\mathrm{r}_{\mathrm{1}}\right)&=-\frac{\mathrm{E}}{\mathrm{R}}\left[\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right] \\ \ln \left(\mathrm{r}_{2} /\mathrm{r}_{1}\right) &=\frac{\mathrm{E}}{\mathrm{R}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right]\\ \ln \left(10 r_{1}/r_{1}\right)&=\frac{\mathrm{E}}{1.987}\left[\frac{1}{400}-\frac{1}{500}\right]\\ \mathrm E &= 9150 \mathrm {~cal/mol} \end{aligned} …

Create a free account to keep reading this post.

and 3 others joined a min ago.

Please log in to add an answer.