Solution:
$
f: R_+ → [4, ∞) is \ given\ as f(x) = x^2 + 4. \\
$
One-one:
Let,
$$
f(x)=f(y) \\
$$
$$
\begin{aligned}
&\Rightarrow x^{2}+4=y^{2}+4 \\\\
&\Rightarrow x^{2}=y^{2} \\\\
&\Rightarrow x=y \quad\left[\text { as } x=y \in \mathbf{R}_{+}\right] \\
\end{aligned}
$$
$\therefore f$
is a one-one function.
Onto:
For ,
$
y \in[4, \infty) \\
$
let ,
$$
y=x^{2}+4 \\
$$
$$
\begin{aligned}
&\Rightarrow x^{2}=y-4 \geq 0 \quad[\text { as } y \geq 4] \\\\
&\Rightarrow x=\sqrt{y-4} \geq 0 \\
\end{aligned}
$$
Therefore, for any $y \in \mathbf{R}$, there exists $x=\sqrt{y-4} \in \mathbf{R}_{\text {such that }}$
$$
f(x)=f(\sqrt{y-4})=(\sqrt{y-4})^{2}+4=y-4+4=y . \\
$$
$\therefore f$,
is onto.
Thus, f is one-one and onto and therefore, $f^{-1}$ exists.
Let us define,
$$
g:[4, \infty) \rightarrow \mathbf{R}_{+} \\
$$
$$
g(y)=\sqrt{y-4} \\
$$
Now,
$$
g \circ f(x)=g(f(x))=g\left(x^{2}+4\right)=\sqrt{\left(x^{2}+4\right)-4}=\sqrt{x^{2}}=x \\
$$
And,
$$
f \circ g(y)=f(g(y))=f(\sqrt{y-4})=(\sqrt{y-4})^{2}+4=(y-4)+4=y \\
$$
$$
\therefore g \circ f=f \circ g=\mathrm{I}_{\mathrm{R}+} \\
$$
Hence, f is invertible and the inverse of $f$ is given by,
$$
f^{-1}(y)=g(y)=\sqrt{y-4} \text {. } \
$$