0
457views
Let f, g and h be functions from R to R. Show that,

Let f, g and h be functions from R to R. Show that,

(i)(f+g)oh=foh+goh

(ii)(f.g)oh=(foh).(goh)

1 Answer
1
2views

Solution:

To prove:

(f+g)h=foh+gh

Consider:

((f+g)h)(x)=(f+g)(h(x))=f(h(x))+g(h(x))=(fh)(x)+(gh)(x)={(fh)+(gh)}(x)((f+g)h)(x)={(fh)+(gh)}(x)xR

Hence,

(f+g)h=fh+goh.

To prove:

(fg)h=(fh)(gh)

Consider:

((fg)oh)(x)=(fg)(h(x))=f(h(x))g(h(x))=(foh)(x)(goh)(x)={(foh)(gh)}(x)((fg)h)(x)={(fh)(gh)}(x)xR

Hence,

(fg) o h=(fh)(gh).

Please log in to add an answer.