Solution :
A gas phase reaction at $400 \mathrm{~K}$.
The rate is given as
$$
\begin{aligned}
-\frac{\mathrm d \mathrm {P_{A}}}{\mathrm {d t}} &=3.66 \mathrm {P_{A}}^{2} \\
-\frac{\mathrm d \mathrm P_{A}}{\mathrm {d t}} &=k \mathrm {P_{A}}^{2}
\end{aligned}
$$
$$\begin{aligned}-\frac{\mathrm d \mathrm P_{A}}{\mathrm {d t}} &=3.66\left(\frac{1}{\text{atm .h}}\right) \mathrm P^2_{A} \\
\mathrm k &=3.66\left(\frac{1}{\text { atm. h }}\right)\\
&=3.66\left(\mathrm{~atm.} \mathrm{~h}\right)^{-1}
\end{aligned}$$
Units of $\mathrm k$ are (atm. h ) $^{-1}$
For gases :
$$
\mathrm{C}_{\mathrm{A}}=\mathrm{P}_{\mathrm{A}} / \mathrm{RT} \Rightarrow \mathrm P_{\mathrm A}=\mathrm {C_{A} R T}
$$
$$
\begin{aligned}
\frac{d \mathrm{ P_{A}}}{\mathrm {d t}}&=\mathrm {R T} \frac{\mathrm d \mathrm C_{A}}{\mathrm {d t}}\\
-\frac{d \mathrm {P_{A}}}{\mathrm {d t}}&=\mathrm k^{\prime} \mathrm {P_{A}^{2}}\\
-\mathrm{RT} \frac{\mathrm d \mathrm{C}_{\mathrm{A}}}{\mathrm{dt}} &=k^{\prime}\left(\mathrm{C}_{\mathrm{A}} \mathrm{RT}\right)^{2}\\
-\frac{\mathrm{dC}_{\mathrm{A}}}{\mathrm{dt}} &=(\mathrm{RT}) \mathrm{k}^{\prime} \mathrm{C}_{\mathrm{A}}^{2}, \mathrm{~mol}/(\mathrm{~l} \cdot \mathrm{h})\\
-\frac{\mathrm{dC}_{\mathrm{A}}}{\mathrm{dt}}&=\mathrm{kC}_{\mathrm{A}}^{2}\\
k&=(R T) k'\\
&=0.08206\left(\frac{l . a t m}{m o l . K}\right) \times(400 \mathrm{~K}) \times 3.66\left(\frac{1}{\mathrm{atm.h}}\right)\\
&=0.08206 \times 400 \times 3.66\left(\frac{l}{\mathrm{~mol} . \mathrm{h}}\right) \\
&=120.13~ \mathrm{l}/(\mathrm{mol.} \mathrm{h})
\end{aligned}
$$
Value of rate constant is $120.13$ with units $l/(\mathrm{mol} \cdot \mathrm{h})$.
If rate is in $\mathrm{mol} /\left(\mathrm{m}^{3}.s\right)$ then $\mathrm{k}$ is
$$
\begin{aligned}
k &=120.13 ~l/(\mathrm{~mol.} \mathrm{~h}) \\
&=\frac{120.13 \times 10^{-3} \mathrm{~m}^{3}}{(\mathrm{~mol.})(3600 \mathrm{~s})} \\
&=3.34 \times 10^{-3} \mathrm{~m}^{3} /(\mathrm{mol.s})
\end{aligned}
$$