1
395views
Find the Fourier series of f(x)=x in the interval (0,2π).
1 Answer
written 2.9 years ago by |
Solution:
The Fourier series of f(x) with period 2π is given by,
f(x)=a0+∞∑n=1ancosnx+∞∑n=1bnsinnx
a0=12π∫2π0f(x)dx=12π∫2π0x dx=12π|x22|2π0=12π(4π22)=πan=1π∫2π0f(x)cosnx dx=1π∫2π0xcosnx dx=1π|2x(sinnxn)−(1)(−cosnxn2)2π0=1π(cos2nπn2−cos0n2)[∵sin2nπ=sin0=0]=0=1π∫2π0f(x)sinnx dx[∵sinnx dx[cos2nπ=cos0=1]
=1π|x(−cosnxn)−(1)(−sinnxn2)|2π0=1π[−2π(cos2nπn)][∵sin2π=−2n[∵cos2nπ=1]
Hence,
f(x)=π−2∞∑n=11nsinnx
x=π−2(sinx+12sin2x+13sin3x+⋯)