1
395views
 Find the Fourier series of f(x)=x in the interval (0,2π)
1 Answer
2
9views

Solution:

The Fourier series of f(x) with period 2π is given by,

f(x)=a0+n=1ancosnx+n=1bnsinnx

a0=12π2π0f(x)dx=12π2π0x dx=12π|x22|2π0=12π(4π22)=πan=1π2π0f(x)cosnx dx=1π2π0xcosnx dx=1π|2x(sinnxn)(1)(cosnxn2)2π0=1π(cos2nπn2cos0n2)[sin2nπ=sin0=0]=0=1π2π0f(x)sinnx dx[sinnx dx[cos2nπ=cos0=1]

=1π|x(cosnxn)(1)(sinnxn2)|2π0=1π[2π(cos2nπn)][sin2π=2n[cos2nπ=1]

Hence,

f(x)=π2n=11nsinnx

x=π2(sinx+12sin2x+13sin3x+)

Please log in to add an answer.