written 2.6 years ago by | • modified 2.6 years ago |
(i) N-A depth
(ii) compressive force
(iii) Tensile force
(iv) ultimate moment
(v) safe concentrated load at mid span over an effective span of 6m.
written 2.6 years ago by | • modified 2.6 years ago |
(i) N-A depth
(ii) compressive force
(iii) Tensile force
(iv) ultimate moment
(v) safe concentrated load at mid span over an effective span of 6m.
written 2.6 years ago by |
Solution:
$ \mathrm{d}=500 \mathrm{~mm}, \mathrm{~b}=250 \mathrm{~mm} \\ $
$ \mathrm{A}_{\mathrm{st}}=3 \mathrm{X} \frac{\pi}{4} \mathrm{X} 20^{2}=942.48 \mathrm{~mm}^{2} \\ $
$ \mathrm{f}_{\mathrm{ck}}=20 \mathrm{Mpa} \mathrm{f}_{\mathrm{y}}=415 \mathrm{Mpa} \\ $
Step - 1:
$$ \begin{aligned} \frac{x_{u}}{d} &=2.41 \times \frac{f y}{f_{c k}} \times \frac{A_{s t}}{b d} \\\\ &=2,41 \times \frac{415}{20} \times \frac{942.48}{250 \times 250} \times 500 \\\\ \mathrm{x}_{\mathrm{u}} &=188.52 \mathrm{~mm} \\ \end{aligned} $$
Step - 2:
For Fe, $415 \frac{x_{u l i m}}{d}=0.48 ; \mathrm{x}_{\mathrm{ulim}}=0.48 \mathrm{X} 500$ $=240 \mathrm{~mm}$
$\therefore \mathrm{x}_{\mathrm{u}}\lt\mathrm{x}_{\mathrm{ulim}}$, the section is under reinforced.
$$ \mathrm{C}_{\mathrm{u}}=0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{X}_{\mathrm{u}} \mathrm{b}=0.36 \\ $$
$$ \mathrm{X} 20 \mathrm{X} 188.52 \mathrm{X} 250 / 10^{3}=339.34 \mathrm{kN} \text {. } \\ $$
Step - 3:
MR for under reinforced section is,
$$ \begin{aligned} \mathrm{M}_{\mathrm{u}} &=\mathrm{MR}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{st}}\left(\mathrm{d}-0.42 \mathrm{x}_{\mathrm{u}}\right) \\\\ &=\frac{0.87 \times 415 \times 942.48(500-0.42 \times 188.52)}{10^{6}} \\\\ &=143.1 \mathrm{kN}-\mathrm{m} \\ \end{aligned} $$
Step - 4:
$$ \mathbf{M}_{\mathrm{u}}=\frac{w_{u} \times L}{4}=\frac{w_{u} \times 6}{4} \\ $$
Equating factored moment to MR,
$$ \begin{aligned} &\frac{W_{u} \times 6}{4}=143.1 \\\\ &\mathrm{~W}_{\mathrm{u}}=95.5 \mathrm{KN} \\ \end{aligned} $$
Safe load, W $=\frac{W_{u}}{1.5}$ load factor/factor of safety.
$$ =63.67 \mathrm{kN} $$