written 2.6 years ago by | • modified 2.6 years ago |
Solution:
Given ellipse is, $ \frac{x^{2}}{9}+\frac{y^{2}}{4}=1........(1) \\ $.
From the symmetry in all the four quadrants,
let, $ P(3 \cos \phi, 2 \sin \phi), 0\lt\phi\lt\pi / 2 \\ $.
Equation of normal at $P(\phi)$ is,
$$ 3 \sec \phi x-2 \operatorname{cosec} \phi y=5 \\ $$
Distance of this normal from centre $(0,0) \\$ $$ =\mathrm{p}=\frac{5}{\sqrt{9 \sec ^{2} \phi+4 \operatorname{cosec}^{2} \phi}} \ $$
Obviously, p is maximum. When,
$Z=9 \sec ^{2} \phi+4 \operatorname{cosec}^{2} \phi $ is minimum.
Now $ \mathrm{dz} / \mathrm{d} \phi=18 \sec ^{2} \phi \tan \phi-8 \operatorname{cosec}^{2} \phi \cot \phi \\ $.
$ \mathrm{dz} / \mathrm{d} \phi=0$ gives $\tan ^{4} \phi=4 / 9 \quad$ i.e. $\tan \phi=\sqrt{(2 / 3)} \\ $.
Clearly for this value of, $ \phi, \mathrm{d}^{2} z / \mathrm{d} \phi^{2}\gt0 \\ $
So z is minimum when,
$ \tan \phi=\sqrt{2 / 3} \\ $
$\therefore$ Equation of required normals,
$$ \begin{aligned} \sqrt{3} 3 x-\sqrt{2} y &=\pm \sqrt{5} \quad \text { and } \quad \sqrt{3} x+\sqrt{2} y=\pm \sqrt{5}, \\\\ \text { Taking } \quad \phi &=\tan ^{-1} \sqrt{2 / 3}, \pi-\tan ^{-1} \sqrt{2 / 3},-\tan ^{-1} \sqrt{2 / 3}, \\\\ \pi &+\tan ^{-1} \sqrt{2 / 3} \end{aligned} \\ $$