0
550views
If α=e2πi/7 and f(x)=A0+20k=1Akxk, then find the value of, f(x)+f(αx)++f(α6x) independent of α.

If α=e2πi/7 and f(x)=A0+20k=1Akxk, then find the value of, f(x)+f(αx)++f(α6x) independent of α.

1 Answer
0
21views

Solution:

Given that, α=e2π/7 and, f(x)=A0+20k=1Akxk

Then, f(αnx)=A0+6k=1Akαnkxk

S=f(x)+f(αx)+..+f(α6x)=6k=1f(αnx)

=6k=1{A0+20k=1Akαnkxk}

$ =7 …

Create a free account to keep reading this post.

and 5 others joined a min ago.

Please log in to add an answer.