(a) Since:
$$
c_{u}=0
$$
Using,
or,
(b) $\therefore$
Using,
$$
\begin{aligned}
\sigma_{1} &=\sigma_{3}+\sigma_{d}=180+148.75=328.75 \mathrm{kN} / \mathrm{m}^{2} \\
\bar{\sigma}_{1} &=\bar{\sigma}_{3} \tan ^{2}\left(45+\frac{\phi_{u}^{\prime}}{2}\right)+2 c^{\prime} \tan \left(45+\frac{\phi_{u}^{\prime}}{2}\right) \\
\bar{\sigma}_{1} &=\bar{\sigma}_{3} \tan ^{2}\left(45+\frac{\phi_{u}^{\prime}}{2}\right)+0 \\
\left(\sigma_{1}^{\prime}-u\right) &=\left(\sigma_{3}-u\right) \tan ^{2}\left(45+\frac{\phi_{c u}^{\prime}}{2}\right) \\
(328.75-u) &=(180-u) \times 3.537 \\
2.537 u &=307.93 \\
u &=121.37 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$
(c) Minor principal effective stress at failure,
$$
\bar{\sigma}_{3 t}=\sigma_{3 f}-u_{f}=180-121.37=58.63 \mathrm{kN} / \mathrm{m}^{2}
$$
(d) Major principal effective stress at failure,
$$
\begin{aligned}
\bar{\sigma}_{1 f} &=\bar{\sigma}_{d f}+\bar{\sigma}_{3 f} \\
&=\left(\bar{\sigma}_{1 f}-\bar{\sigma}_{3 f}\right)+\bar{\sigma}_{3 f} \\
&=\left[\left(\sigma_{1 f}-u\right)-\left(\sigma_{3}-u\right)\right]+\bar{\sigma}_{3 f} \\
&=\left(\sigma_{1 f}-\sigma_{3}\right)+\bar{\sigma}_{3 f}
\end{aligned}
$$
$\begin{aligned} &=\sigma_{d}+\bar{\sigma}_{3 f}=148.75+58.63 \\ &=207.38 \mathrm{kN} / \mathrm{m}^{2} \\ A_{f} &=\frac{u_{f}}{\left(\sigma_{1}-\sigma_{3}\right)_{f}}=\frac{121.37}{148.75}=0.815 \end{aligned}$