Solution:
Let subscripts 1 and 2 represent the flow conditions before and after the shock wave.
Mach number,
$
\quad M_{1}=2 \\
$
Atmospheric pressure,
$
p_{1}=26.5 \mathrm{kN} / \mathrm{m}^{2} \\
$
Air density,
$
\quad \rho_{1}=0.413 \mathrm{~kg} / \mathrm{m}^{3} \\
$
Mach number,
$M_{2}$ :
$$
\begin{aligned}
M_{2}^{2} &=\frac{(\gamma-1) M_{1}^{2}+2}{2 \gamma M_{1}^{2}-(\gamma-1)} \\\\
&=\frac{(1.4-1) \times 2^{2}+2}{2 \times 1.4 \times 2^{2}-(1.4-1)}=\frac{3.6}{11.2-0.4}=0.333
\end{aligned} \\
$$
$$
M_{2}=\mathbf{0 . 5 7 7}....(1) \\
$$
Pressure,
$\mathbf{p}_{2}$ :
$$
\frac{p_{2}}{p_{1}}=\frac{2 \gamma M_{1}^{2}-(\gamma-1)}{(\gamma+1)}....(2) \\
$$
$$
=\frac{2 \times 1.4 \times 2^{2}-(1.4-1)}{(1.4+1)}=\frac{11.2-0.4}{2.4}=4.5 \\
$$
$$
p_{2}=26.5 \times 4.5=119.25 \mathrm{kN} / \mathrm{m}^{2} \text { (Ans.) }
$$
Density,
$\rho_{2}:$
$$
\begin{aligned}
\frac{\rho_{2}}{\rho_{1}} &=\frac{(\gamma+1) M_{1}^{2}}{(\gamma-1) M_{1}^{2}+2} \\\\
&=\frac{(1.4+1) 2^{2}}{(1.4-1) 2^{2}+2}=\frac{9.6}{1.6+2}=2.667...(3)
\end{aligned} \\
$$
$$
\rho_{2}=0.413 \times 2.667=1.101 \mathrm{~kg} / \mathrm{m}^{3} \text { (Ans.) } \\
$$
Temperature,
$T_{1}$ :
Since ,
$$
p_{1}=\rho_{1} R T_{1} \\
$$
$$
\quad \therefore T_{1}=\frac{p_{1}}{\rho_{1} R}=\frac{26.5 \times 10^{3}}{0.413 \times 287}=223.6 \mathrm{~K} \ or \ \mathbf{4 9 . 4 ^ { \circ }} \mathbf{C} \\
$$
Temperature,
$\mathbf{T}_{2}$ :
$$
\frac{T_{2}}{T_{1}}=\frac{\left[(\gamma-1) M_{1}^{2}+2\right]\left[2 \gamma M_{1}^{2}-(\gamma-1)\right]}{(\gamma+1)^{2} M_{1}^{2}} \\
$$
$$
=\frac{\left[(1.4-1) 2^{2}+2\right]\left[2 \times 1.4 \times 2^{2}-(1.4-1)\right]}{(1.4+1)^{2} 2^{2}} \\
$$
$$
=\frac{(1.6+2)(11.2-0.4)}{23.04}=1.6875
$$
$$
\therefore \quad T_{2}=223.6 \times 1.6875=377.3 \mathrm{~K}\ or \ \mathbf{1 0 4 . 3}^{\circ} \mathrm{C} \\
$$
Velocity,
$V_{1}$ :
$$
C_{1}=\sqrt{\gamma R T_{1}}=\sqrt{1.4 \times 287 \times 223.6}=299.7 \mathrm{~m} / \mathrm{s} \\
$$
Since,
$$
\quad \frac{V_{1}}{C_{1}}=M_{1}=2 \therefore V_{1}=299.7 \times 2=599.4 \mathrm{~m} / \mathbf{s} \quad \\
$$
Velocity,
$V_{2}$ :
$$
C_{2}=\sqrt{\gamma R T_{2}}=\sqrt{1.4 \times 287 \times 377.3}=389.35 \mathrm{~m} / \mathrm{s} \\
$$
Since,
$$
\frac{V_{2}}{C_{2}}=M_{2}=0.577 \therefore V_{2}=389.35 \times 0.577=224.6 \mathrm{~m} / \mathbf{s} \quad \text { (Ans.) } \\
$$