Solution:
$
\begin{aligned}
\mathrm{AB} &=\left[\begin{array}{cc}
2 & 3 \\\\
-1 & 0
\end{array}\right]\left[\begin{array}{cc}
-1 & 2 \\\\
0 & 1
\end{array}\right] \\\\
\mathrm{AB} &=\left[\begin{array}{cc}
-2 & 7 \\\\
1 & -2
\end{array}\right] \\\\
|\mathrm{AB}| &=\left[\begin{array}{cc}
-2 & 7 \\\\
1 & -2
\end{array}\right]=-3 \neq 0
\end{aligned} \\
$
$(A B)^{-1}$ exists,
$
\begin{aligned}
\operatorname{Adj}(\mathrm{AB}) &=\left(\begin{array}{rr}
-2 & -7 \\\\
-1 & -2
\end{array}\right) \\\\
(\mathrm{AB})^{-1} &=\frac{1}{-3}\left(\begin{array}{rr}
-2 & -7 \\\\
-1 & -2
\end{array}\right) \\\\
(\mathrm{AB})^{-1} &=\frac{-1}{3}\left(\begin{array}{rr}
-2 & -7 \\\\
-1 & -2
\end{array}\right)........(1)
\end{aligned}
$
$
B=\left(\begin{array}{cc}
-1 & 2 \\\\
0 & 1
\end{array}\right) \quad|B|=\left|\begin{array}{cc}
-1 & 2 \\\\
0 & 1
\end{array}\right|=-1 \neq 0
$
$
\operatorname{Adj} \mathrm{B}=\left(\begin{array}{cc}-1 & 2 \\ 0 & 1\end{array}\right) \\
$
$
\begin{aligned}
\mathrm{B}^{-1} &=\frac{1}{-1}\left(\begin{array}{cc}
-1 & 2 \\\
0 & 1
\end{array}\right) \\\\
\mathrm{A} &=\left[\begin{array}{cc}
2 & 3 \\\\
-1 & 0
\end{array}\right] \quad|\mathrm{A}=| \begin{array}{cc}
2 & 3 \\\\
-1 & 0
\end{array} \mid=3 \neq 0
\end{aligned} \\
$
$
\operatorname{Adj} \mathrm{B}=\left(\begin{array}{cc}-1 & 2 \\\\ 0 & 1\end{array}\right) \\
$
$
\mathrm{B}^{-1}=\frac{1}{-1}\left(\begin{array}{cc}-1 & 2 \\\\ 0 & 1\end{array}\right) \\
$
$
\mathrm{A}=\left[\begin{array}{cc}2 & 3 \\\\ -1 & 0\end{array}\right] \quad|\mathrm{A} \models| \begin{array}{cc}2 & 3 \\\\ -1 & 0\end{array} \mid=3 \neq 0 \\
$
$
\operatorname{Adj} \mathrm{A}=\left[\begin{array}{cc}0 & -3 \\\\ 1 & 2\end{array}\right] \\
$
$
\mathrm{A}^{-1}=\frac{1}{3}\left[\begin{array}{cc}0 & -3 \\\\ 1 & 2\end{array}\right] \\
$
$
\mathrm{B}^{-1} \mathrm{~A}^{-1}=-\frac{1}{1}\left[\begin{array}{cc}1 & -2 \\\\ 0 & -1\end{array}\right] \times \frac{1}{3}\left[\begin{array}{cc}0 & -3 \\\\ 1 & 2\end{array}\right] \\
$
$
\mathrm{B}^{-1} \mathrm{~A}^{-1}=-\frac{1}{3}\left[\begin{array}{cc}1 & -2 \\\\ 0 & -1\end{array}\right]\left[\begin{array}{cc}0 & -3 \\\\ 1 & 2\end{array}\right] \\
$
$
\mathrm{B}^{-1} \mathrm{~A}^{-1}=-\frac{1}{3}\left[\begin{array}{ll}-2 & -7 \\\\ -1 & -2\end{array}\right]........(2) \\
$
From (i) and (ii),
$
(\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1} \\
$