Solution:
Bernoulli's equation for an incompressible flow is given by,
$$
p+\frac{\rho V^{2}}{2}=\text { constant } \\
$$
The stagnation pressure $\left(p_{s}\right)$ created at Pitot-static tube,
$$
p_{s}=p_{0}+\frac{\rho_{0} V_{0}^{2}}{2} \text { (neglecting compressibility effects) }...(1) \
$$
$$
p_{0}=30 \mathrm{kN} / \mathrm{m}^{2}, V_{0}=152 \mathrm{~m} / \mathrm{s}, \rho_{0}=1.224 \mathrm{~kg} / \mathrm{m}^{3} \
$$
Here,
$$
\therefore \quad p_{s}=30+\frac{1.224 \times 152^{2}}{2} \times 10^{-3}=44.139 \mathrm{kN} / \mathrm{m}^{2} \\\\
$$
Neglecting compressibility effect, the speed of the aircraft when,
$
\rho_{0}=0.454 \mathrm{~kg} / \mathrm{m}^{3} \text { is given by [using eqn. (i)], } \\
$
$$or,$$
$$
\therefore \quad V_{0}=249.57 \mathrm{~m} / \mathrm{s} \\
$$
Sonic velocity,
$$
\quad C_{0}=\sqrt{\gamma R T_{0}}=\sqrt{\gamma \frac{p_{0}}{\rho_{0}}}=\sqrt{1.4 \times \frac{30 \times 10^{3}}{0.454}}=304.16 \mathrm{~m} / \mathrm{s} \\
$$
Mach number,
$$
\quad M=\frac{V_{0}}{C_{0}}=\frac{249.57}{304.16}=0.82 \\
$$
Compressibility correction factor,
$$
=\left(1+\frac{M_{0}^{2}}{4}\right)
$$
neglecting the terms containing higher powers of $M_{0}, \\$
$
\begin{aligned}
&=\left(1+\frac{0.82}{4}\right)=1.168 \\
\therefore \quad \text { True speed of aircraft } &=\frac{249.57}{\sqrt{1168}}=230.9 \mathrm{~m} / \mathrm{s}
\end{aligned} \\
$
$
\text { Hence true speed of aircraft }=\mathbf{2 3 0 . 9} \mathrm{m} / \mathbf{s} \text { (Ans.) }
$