Solution:
Pressure of air,
$
p_{0}=200 \mathrm{kN} / \mathrm{m}^{2} \\
$
Temperature of air,
$
T_{0}=27+233=300 \mathrm{~K} \\
$
Velocity of air,
$
V_{0}=200 \mathrm{~m} / \mathrm{s} \\
$
Stagnation pressure, $p_{s}$ :
(i) Compressibility is neglected :
$$
p_{s}=p_{0}+\frac{\rho_{0} V_{0}^{2}}{2} \\
$$
where,
$$
\rho_{0}=\frac{p_{0}}{R T_{0}}=\frac{220 \times 10^{3}}{287 \times 300}=2.555 \mathrm{~kg} / \mathrm{m}^{3} \\
$$
$$
p_{s}=220+\frac{2.555 \times 200^{2}}{2} \times 10^{-3}\left(\mathrm{kN} / \mathrm{m}^{2}\right)=271.1 \mathbf{k N} / \mathbf{m}^{2} . \text { Ans. } \\
$$
(ii) Compressibility is accounted for :
The stagnation pressure, when compressibility is accounted for, is given by,
$$
p_{s}=p_{0}+\frac{\rho_{0} V_{0}^{2}}{2}\left(1+\frac{M_{0}^{2}}{4}+\frac{2-\gamma}{24} M_{0}^{4}+\ldots\right) \\
$$
Mach number,
$$
\quad M_{0}=\frac{V_{0}}{C_{0}}=\frac{200}{\sqrt{\gamma R T_{0}}}=\frac{200}{\sqrt{1.4 \times 287 \times 300}}=0.576 \\
$$
$$or,$$
$$
p_{s}=220+\frac{2.555 \times 200^{2}}{2} \times 10^{-3}\left(1+\frac{0.576^{2}}{4}+\frac{2-1.4}{24} \times 0.576^{4}\right) \\\\
$$
$$
p_{s}=220+51.1(1+0.0829+0.00275)=\mathbf{2 7 5 . 4 7} \mathbf{k N} / \mathbf{m}^{2} \quad \\
$$