0
699views
If, f(x)=x,0<x<π2 =πx,π2<x<π show that, (i) f(x)=4π[sinxsin3x32+sin5x52]
1

Please don't put incorrect Tags, and complete the question


1 Answer
1
4views

Solution:

(i) For the half-range sine series,

Let, f(x)=n=1bnsinnx

Then, bn=2ππ0f(x)sinnxdx=2π[π/20xsinnxdx+ππ/2(πx)sinnxdx]

=2π[x(cosnxn)1(sinnxn2)]π/20+2π[(πx)(cosnxn)(1)(sinnxn2]π0=2π[π2ncosnπ2+1n2sinnπ2]+2π[π2ncosnπ2+1n2sinnπ2]=2π[2n2sinnπ2]=4πn2sinnπ2

When n is even, bn=0. f(x)=4π[sinxsin3x32+sin5x52..] 

(ii) For the half-range sine series,

Let, f(x)=a02+n=1ancosnx

Then, a0=2ππ0f(x)dx=2π[π/20xdx+ππ/2(πx)dx]

=2π[|x22|π/20+|πxx22|ππ/2]=2π[π28+(π2π22)(π22π28)]=2π[π24]=π2

an=2πn0f(x)cosnxdx=2π[n/20xcosnxdx+ππ/2(πx)cosnxdx]=2π[xsinnxn1(cosnxn2)]π/20+2π[(πx)sinnxn(1)(cosnxn2)]ππ/2=2π[π2nsinnπ2+1n2cosnπ21n2]+2π[cosnπn2π2nsinnπ2+1n2cosnπ2]=2π[2n2cosnπ2cosnπn21n2]=2πn2[2cosnπ2cosnπ1]

a1=0,a2=2π22(2cosπcos2π1)=2π12,a3=0,a4=0,a5=0,a6=2π62(2cos3πcos6π1)=2π32,a7=0,a8=0,a9=0,a10=2π102(2cos5πcos10π1)=2π52,..

Hence, f(x)=π42π[cos2x12+cos6x32+cos10x52+]

Please log in to add an answer.