written 2.9 years ago by | • modified 2.9 years ago |
written 2.9 years ago by |
Solution:
(i) For the half-range sine series,
Let, f(x)=∑∞n=1bnsinnx
Then, bn=2π∫π0f(x)sinnxdx=2π[∫π/20xsinnxdx+∫ππ/2(π−x)sinnxdx]
=2π[x(−cosnxn)−1⋅(−sinnxn2)]π/20+2π[(π−x)(−cosnxn)−(−1)(−sinnxn2]π0=2π[−π2ncosnπ2+1n2sinnπ2]+2π[π2ncosnπ2+1n2sinnπ2]=2π[2n2sinnπ2]=4πn2sinnπ2
When n is even, bn=0. ∴f(x)=4π[sinx−sin3x32+sin5x52−…..]
(ii) For the half-range sine series,
Let, f(x)=a02+∑∞n=1ancosnx
Then, a0=2π∫π0f(x)dx=2π[∫π/20xdx+∫ππ/2(π−x)dx]
=2π[|x22|π/20+|πx−x22|ππ/2]=2π[π28+(π2−π22)−(π22−π28)]=2π[π24]=π2
an=2π∫n0f(x)cosnxdx=2π[∫n/20xcosnxdx+∫ππ/2(π−x)cosnxdx]=2π[x⋅sinnxn−1⋅(−cosnxn2)]π/20+2π[(π−x)⋅sinnxn−(−1)(−cosnxn2)]ππ/2=2π[π2nsinnπ2+1n2cosnπ2−1n2]+2π[−cosnπn2−π2nsinnπ2+1n2cosnπ2]=2π[2n2cosnπ2−cosnπn2−1n2]=2πn2[2cosnπ2−cosnπ−1]
∴a1=0,a2=2π⋅22(2cosπ−cos2π−1)=−2π⋅12,a3=0,a4=0,a5=0,a6=2π⋅62(2cos3π−cos6π−1)=−2π⋅32,a7=0,a8=0,a9=0,a10=2π⋅102(2cos5π−cos10π−1)=−2π⋅52,…..
Hence, f(x)=π4−2π[cos2x12+cos6x32+cos10x52+……]
Please don't put incorrect Tags, and complete the question