Solution:
Velocity of air,
$
\quad V_{0}=1000 \mathrm{~km} / \mathrm{h}=\frac{1000 \times 1000}{60 \times 60}=277.78 \mathrm{~m} / \mathrm{s} \\
$
Temperature of air,
$
\quad T_{0}=47+273=320 \mathrm{~K} \\
$
Atmospheric pressure,
$
\quad p_{a t m}=98.1 \mathrm{kN} / \mathrm{m}^{2} \\
$
Pressure of air (static),
$
\quad p_{0}=98.1-9.81=88.29 \mathrm{kN} / \mathrm{m}^{2} \\
$
Sonic velocity,
$
\quad C_{0}=\sqrt{\gamma R T_{0}}=\sqrt{14 \times 287 \times 320}=358.6 \mathrm{~m} / \mathrm{s} \\
$
$\therefore$ Mach number,
$
\quad M_{0}=\frac{V_{0}}{C_{0}}=\frac{277.78}{358.6}=0.7746 \\
$
Stagnation pressure,
$
\mathbf{p}_{\mathrm{s}}: \\
$
The stagnation pressure is given by,
$$
p_{s}=p_{0}\left[1+\left(\frac{\gamma-1}{2}\right) M_{0}^{2}\right]^{\frac{\gamma}{\gamma-1}} \\
$$
$$or,$$
$$
p_{s}=88.29\left[1+\frac{1.4-1}{2} \times 0.7746^{2}\right]^{\frac{1.4}{1.4-1}} \\
$$
$$
=88.29(1.12)^{3.5}=131.27 \mathrm{kN} / \mathbf{m}^{2} \quad \text { (Ans.) } \\
$$
Stagnation temperature,
$
\mathrm{T}_{\mathrm{s}}: \\
$
$$
\begin{aligned}
&T_{s}=T_{0}\left[1+\left(\frac{\gamma-1}{2}\right) M_{0}^{2}\right] \\\\
&T_{s}=320\left[1+\frac{14-1}{2} \times 0.7746^{2}\right]=358.4 \mathrm{~K}^{2} \text { or } \mathbf{8 5 . 4}^{\circ} \mathbf{C} \quad \text { (Ans.) } \\
\end{aligned}
$$
Stagnation density,
$
\rho_{\mathrm{s}}: \\
$
$$
\rho_{s}=\frac{p_{s}}{R T_{s}}=\frac{131.27 \times 10^{3}}{287 \times 358.4}=1.276 \mathrm{~kg} / \mathrm{m}^{3} \\
$$
Compressibility factor at,
$
\mathrm{M}=0.8 : \\
$
Compressibility factor,
$$
\begin{aligned}
&=1+\frac{M_{0}^{2}}{4}+\frac{2-\gamma}{24} M_{0}^{4}+\ldots \\\\
&=1+\frac{0.8^{2}}{4}+\frac{2-1.4}{24} \times 0.8^{4}=1.1702
\end{aligned} \\
$$