Solution:
Altitude of the aircraft,
$
= 1.8 km = 1800 m
$
Temperature,
$
T = 4 + 273 = 277 K
$
Time,
$
t = 4 s
$
Speed of the aircraft V :
Refer Let, O represent the observer and A the position of the aircraft just vertically over the observer. After 4 seconds, the aircraft reaches the position represented by the point B. Line AB represents the wave front and $\alpha$ the Mach angle.
From Fig., we have,
$
\tan \alpha=\frac{1800}{4 V}=\frac{450}{V}...(1) \\
$
But, Mach number,
$
M=\frac{C}{V}=\frac{1}{\sin \alpha} \\
$
$
V=\frac{C}{\sin \alpha}....(2) \\
$
Substituting the value of $V$ in eqn. (i), we get,
$$
\tan \alpha=\frac{450}{(C / \sin \alpha)}=\frac{450 \sin \alpha}{C} \
$$
$$
\frac{\sin \alpha}{\cos \alpha}=\frac{450 \sin \alpha}{C} \ or \cos \alpha=\frac{C}{450}....(3) \\
$$
But $C=\sqrt{\gamma R T}$, where C is the sonic velocity.
$
R=287 \mathrm{~J} / \mathrm{kg} \mathrm{K} \\
$
and
$
\gamma=1.4...(Given) \\
$
$
\therefore \quad C=\sqrt{1.4 \times 287 \times 277}=333.6 \mathrm{~m} / \mathrm{s} \\
$
Substituting the value of $C$ in eqn. (ii), we get,
$$
\cos \alpha=\frac{333.6}{450}=0.7413 \
$$
$$
\therefore \quad \sin \alpha=\sqrt{1-\cos ^{2} \alpha}=\sqrt{1-0.7413^{2}}=0.6712 \\
$$
Substituting the value of $\sin \alpha$ in eqn. (ii), we get,
$$
V=\frac{C}{\sin \alpha}=\frac{333.6}{0.6712}=497 \mathrm{~m} / \mathrm{s}=\frac{497 \times 3600}{1000}=\mathbf{1 7 8 9 . 2} \mathbf{~ k m} / \mathbf{h} \text { (Ans.) } \\
$$