Solution:
Section 1:
Velocity of the gas,
$
V=300 \mathrm{~m} / \mathrm{s} \\
$
Pressure,
$
p_{2}= 78 \mathrm{kN} / \mathrm{m}^{2} \\
$
Temperature,
$
\quad T_{1}=40+273=313 \mathrm{~K} \\
$
Section 2 :
Pressure,
$
p_{2}=117 \mathrm{kN} / \mathrm{m}^{2} \\
$
$
R=287 \mathrm{~J} / \mathrm{kg} \mathrm{K}, \gamma=1.4 \\
$
Velocity of gas at section $2, V_{2}$ :
Applying Bernoulli's equations at sections 1 and 2 for adiabatic process, we have,
$$
\left(\frac{\gamma}{\gamma-1}\right) \frac{p_{1}}{\rho_{1} g}+\frac{V_{1}^{2}}{2 g}=z_{1}=\left(\frac{\gamma}{\gamma-1}\right) \frac{p_{2}}{\rho_{2} g}+\frac{V_{2}^{2}}{2 g}+z_{2} \\
$$
But $z_{1}=z_{2}$, since the pipe is horizontal.
$$
\therefore \quad\left(\frac{\gamma}{\gamma-1}\right) \frac{p_{1}}{\rho_{1} g}+\frac{V_{1}^{2}}{2 g}=\left(\frac{\gamma}{\gamma-1}\right) \frac{p_{2}}{\rho_{2} g}+\frac{V_{2}^{2}}{2 g} \\
$$
Cancelling ' $g$ ' on both sides, we get,
$$
\begin{array}{r}
\left(\frac{\gamma}{\gamma-1}\right)\left(\frac{p_{1}}{\rho_{1}}-\frac{p_{2}}{\rho_{2}}\right)=\frac{V_{2}^{2}}{2}-\frac{V_{1}^{2}}{2} \\
\text { or, } \quad\left(\frac{\gamma}{\gamma-1}\right) \frac{p_{1}}{\rho_{1}}\left(1-\frac{p_{2}}{\rho_{2}} \times \frac{\rho_{1}}{p_{1}}\right)=\frac{V_{2}^{2}}{2}-\frac{V_{1}^{2}}{2} \\
\therefore \quad\left(\frac{\gamma}{\gamma-1}\right) \frac{p_{1}}{\rho_{1}}\left(1-\frac{p_{2}}{p_{1}} \times \frac{\rho_{1}}{\rho_{2}}\right)=\frac{V_{2}^{2}}{2}-\frac{V_{1}^{2}}{2}....(1)
\end{array}\
$$
For an adiabatic flow :
$
\frac{p_{1}}{\rho_{1}^{\gamma}}=\frac{p_{2}}{\rho_{2}^{\gamma}}$ or $\frac{p_{1}}{p_{2}}=\left(\frac{\rho_{1}}{\rho_{2}}\right)^{\gamma}$ or $\frac{\rho_{1}}{\rho_{2}}=\left(\frac{p_{1}}{p_{2}}\right)^{\frac{1}{\gamma}} \\
$
Substituting the value of, $\frac{\rho_{1}}{\rho_{2}}$ in eqn (i), we get,
$$
\left(\frac{\gamma}{\gamma-1}\right) \frac{p_{1}}{\rho_{1}}\left\{1-\frac{p_{2}}{p_{1}} \times\left(\frac{p_{1}}{p_{2}}\right)^{\frac{1}{\gamma}}\right\}=\frac{V_{2}^{2}}{2}-\frac{V_{1}^{2}}{2} \\
$$
$$
\left(\frac{\gamma}{\gamma-1}\right) \frac{p_{1}}{\rho_{1}}\left\{1-\left(\frac{p_{2}}{p_{1}}\right)^{1-\frac{1}{\gamma}}\right\}=\frac{V_{2}^{2}}{2}-\frac{V_{1}^{2}}{2} \\
$$
$$
\left(\frac{\gamma}{\gamma-1}\right) \frac{p_{1}}{\rho_{1}}\left\{1-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma}}\right\}=\frac{V_{2}^{2}-V_{1}^{2}}{2}...(2) \\
$$
At section 1 :
$$
\begin{aligned}
&\frac{p_{1}}{\rho_{1}}=R T_{1}=287 \times 313=89831 \\\\
&\frac{p_{2}}{p_{1}}=\frac{117}{78}=1.5, \text { and } V_{1}=300 \mathrm{~m} / \mathrm{s} \\
\end{aligned}
$$
Substituting the values in eqn. (ii), we get,
$
\left(\frac{1.4}{1.4-1}\right) \times 89831\left\{1-(1.5)^{\frac{1.4-1}{1.4}}\right\}=\frac{V_{2}^{2}}{2}-\frac{300^{2}}{2} \\
$
$
314408.5(1-1.1228)=\frac{V_{2}^{2}}{2}-45000$ or $-38609.4=\frac{V_{2}^{2}}{2}-45000 \\
$
$
V_{2}{ }^{2}=12781.2
$
or,
$
\mathbf{V}_{2}=\mathbf{1 1 3 . 0 5} \mathbf{m} / \mathbf{s} . \quad
$ (Ans.)