0
310views
Oblain Fourier series for the function f(x)=πx,0x1 =π(2x),1x2.
1 Answer
0
1views

Solution:

Let, f(x)=a02+n=1ancosnπx+n=1bnsinuπx

Then, a0=20f(x)dx=10πxdx+21π(2x)dx=π[x22]01+π[2xx22]12

=π(12)+π[(42)(212)]=π

$$ \begin{aligned} a_{n} &=\int_{0}^{2} f(x) \cos n \pi x d x=\int_{0}^{1} \pi x \cos …

Create a free account to keep reading this post.

and 4 others joined a min ago.

Please log in to add an answer.