1
331views
Show that, (1+i)n+(1i)n=2n+22cosnπ4
1 Answer
0
2views

Solution:

Let, 1+i=r(cosθ+isinθ)=rcosθ+isinθ Equating real \& imaginary parts on both sides,

rcosθ=1&rsinθ=1

Now,

(rcosθ)2+(rsinθ)2=(1)2+(1)2

Now,

(rcosθ)2+(rsinθ)2=(1)2+(1)2

$ \Rightarrow \mathrm{r}^{2} \cos ^{2} \theta+\mathrm{r}^{2} …

Create a free account to keep reading this post.

and 4 others joined a min ago.

Please log in to add an answer.