1
13kviews
Find a Fourier series to represent xx2 from x=π to x=π. Hence show that, 112122+132142+=π212.
1 Answer
1
1.4kviews

solution:

Let ,xx2=a02+n=1ancosnx+n=1bnsinnx By Euler's formulae, we have,

a0=1πππ(xx2)dx=1π[x22x33]ππ

=1π[(π22π33)(π22+π33)]=2π23

$$ \begin{aligned} a_{n} &=\frac{1}{\pi} \int_{-\pi}^{\pi}\left(x-x^{2}\right) \cos n x d x \\\\ &=\frac{1}{\pi}\left[\left(x-x^{2}\right) \frac{\sin n x}{n}-(1-2 x)\left(-\frac{\cos n x}{n^{2}}\right)+(-2)\left(-\frac{\sin n x}{n^{3}}\right)\right]_{-\pi}^{n} \\\\ &=\frac{1}{\pi}\left[(1-2 \pi) \frac{\cos …

Create a free account to keep reading this post.

and 3 others joined a min ago.

Please log in to add an answer.