1
13kviews
Find a Fourier series to represent x−x2 from x=−π to x=π. Hence show that, 112−122+132−142+……=π212.
1 Answer
written 3.0 years ago by |
solution:
Let ,x−x2=a02+∑∞n=1ancosnx+∑∞n=1bnsinnx By Euler's formulae, we have,
a0=1π∫π−π(x−x2)dx=1π[x22−x33]π−π
=1π[(π22−π33)−(π22+π33)]=−2π23
$$ \begin{aligned} a_{n} &=\frac{1}{\pi} \int_{-\pi}^{\pi}\left(x-x^{2}\right) \cos n x d x \\\\ &=\frac{1}{\pi}\left[\left(x-x^{2}\right) \frac{\sin n x}{n}-(1-2 x)\left(-\frac{\cos n x}{n^{2}}\right)+(-2)\left(-\frac{\sin n x}{n^{3}}\right)\right]_{-\pi}^{n} \\\\ &=\frac{1}{\pi}\left[(1-2 \pi) \frac{\cos …