0
368views
Prove that ,log(1+reiθ)=12log(t+2rcosθ+r2)+itan1rsinθ1+rcosθ
1 Answer
0
4views

Solution:

Deduce that, log(1+cosθ+isinθ)=log(2cosθ2)+iθ2. log(1+reiθ)=log[1+r(cosθ+isinθ)]=log[(1+rcosθ)+i(rsinθ)] =12log[(1+rcosθ)2+(rsinθ)2]+itan1rsinθ1+rcosθ=12log[1+2rcosθ+r2cos2θ+r2sin2θ]+itan1rsinθ1+rcosθ=12log[1+2rcosθ+r2]+itan1rsinθ1+rcosθ.....(i) 

Now, log(1+cosθ+isinθ)=log(1+eiθ)

Putting, r=1 in (i),

log(1+cosθ+isinθ)=12log(1+2cosθ+1)+itan1sinθ1+cosθ=12log[2(1+cosθ)]+itan12sinθ2cosθ22cos2θ2=12log[22cos2θ2]+itan1(tanθ2)=12log[(2cosθ2)2]+iθ2=122log(2cosθ2)+iθ2=log(2cosθ2)+iθ2.

Please log in to add an answer.