0
368views
Prove that ,log(1+reiθ)=12log(t+2rcosθ+r2)+itan−1rsinθ1+rcosθ
1 Answer
written 3.0 years ago by | • modified 3.0 years ago |
Solution:
Deduce that, log(1+cosθ+isinθ)=log(2cosθ2)+iθ2. log(1+reiθ)=log[1+r(cosθ+isinθ)]=log[(1+rcosθ)+i(rsinθ)] =12log[(1+rcosθ)2+(rsinθ)2]+itan−1rsinθ1+rcosθ=12log[1+2rcosθ+r2cos2θ+r2sin2θ]+itan−1rsinθ1+rcosθ=12log[1+2rcosθ+r2]+itan−1rsinθ1+rcosθ.....(i)
Now, log(1+cosθ+isinθ)=log(1+eiθ)
Putting, r=1 in (i),
log(1+cosθ+isinθ)=12log(1+2cosθ+1)+itan−1sinθ1+cosθ=12log[2(1+cosθ)]+itan−12sinθ2cosθ22cos2θ2=12log[2⋅2cos2θ2]+itan−1(tanθ2)=12log[(2cosθ2)2]+iθ2=12⋅2log(2cosθ2)+i⋅θ2=log(2cosθ2)+i⋅θ2.