0
300views
Prove that, tan3 A=3tanA−tan3 A1−3tan2 A.
1 Answer
written 3.0 years ago by |
To Proof :-
tan3 A=3tanA−tan3 A1−3tan2 A
Proof :-
As we know -
tan(A+B)=tan A + tan B1 −tan A tan B
Put B = 2A.
tanA + 2A =tan A + tan 2A1 −tan A tan 2A
As we know,
tan 2A = 2 tan A1 − tan2 A
So,
tan 3A =tan A+2 tan A1 − tan2 A1 − tan A2 tan A1 − tan2 A
tan 3A = tan A−tan3 A+2tan A1 − tan2 A1 − tan2 A −2tan2 A1 − tan2 A
tan 3A = 3tanA−tan3 A1−3tan2 A
Hence,Proved.