3
1.8kviews
Find all the values of (12+i√32)3/4 , and also prove that the product of the four values is 1 .
2 Answers
2
100views
written 3.0 years ago by |
Solution:
Let a+ib=12+i√32=r(cosθ+isinθ)....(1)
Here a=12&b=√32
Modulus:
r=√a2+b2=√(12)2+(√32)2=√14+34=√1=1
Arugument:
θ=tan−1(ba)=tan−1[√3/21/2]=tan−1(√3)=π3
∴ (1) becomes,
$ \begin{array}{l} \frac{1}{2}+i \frac{\sqrt{3}}{2}=1\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right) \\\\ \Rightarrow\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)^{3 / 4}=\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)^{3 / 4} …
ADD COMMENT
EDIT
0
25views
written 3.0 years ago by |
Given that (12+i√32)3/4.
i.e. (12+i√32)3/4 = r(cos θ + isin θ)
Let's change it into Polar Form, so we have
r=12 + i√32
r = √(12)2 + (√32)2
r = √14 + 34 = 1
Now, Cos θ = 12
$$And, …
ADD COMMENT
EDIT
Please log in to add an answer.