3
1.8kviews
Find all the values of (12+i32)3/4 , and also prove that the product of the four values is 1 .
2 Answers
2
100views

Solution:

Let a+ib=12+i32=r(cosθ+isinθ)....(1)

Here a=12&b=32

Modulus:

r=a2+b2=(12)2+(32)2=14+34=1=1

Arugument:

θ=tan1(ba)=tan1[3/21/2]=tan1(3)=π3

(1) becomes,

$ \begin{array}{l} \frac{1}{2}+i \frac{\sqrt{3}}{2}=1\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right) \\\\ \Rightarrow\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)^{3 / 4}=\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)^{3 / 4} …

Create a free account to keep reading this post.

and 4 others joined a min ago.

0
25views

Given that (12+i32)3/4.

i.e. (12+i32)3/4 = r(cos θ + isin θ)

Let's change it into Polar Form, so we have

r=12 + i32

r = (12)2 + (32)2

r = 14 + 34 = 1

Now, Cos θ = 12

$$And, …

Create a free account to keep reading this post.

and 2 others joined a min ago.

Please log in to add an answer.