Solution:
Given, $\mathrm{a}=\cos \theta+i \sin \theta$
& $\quad \mathrm{~b}=\cos \phi+\mathrm{i} \sin \phi$
(i) $\cos (\theta+\phi)=\frac{1}{2}\left[a b+\frac{1}{a b}\right]$ prove that,
Now, $a b=(\cos \theta+i \sin \theta)(\cos \phi+i \sin \phi)\\
$
$
\Rightarrow a b=\cos (\theta+\phi)+i \sin (\theta+\phi)\\
$
$also, \frac{1}{a b}=(a b)^{-1}=[\cos (\theta+\phi)+i \sin (\theta+\phi)]\\$
$
\Rightarrow \frac{1}{a b}=\cos (\theta+\phi)-i \sin (\theta+\phi) \ldots \ldots . .(2)
$
$$
{\therefore(1)+(2)}
$$
$
\begin{aligned}
\Rightarrow& a b+\frac{1}{a b}=\cos (\theta+\phi)+i \sin (\theta+\phi)+\cos (\theta+\phi)-i \sin (\theta+\phi) \\
\Rightarrow & a b+\frac{1}{a b}=2 \cos (\theta+\phi) \\
\Rightarrow & \cos (\theta+\phi)=\frac{1}{2}\left[a b+\frac{1}{a b}\right]\\
\end{aligned}
$
(ii) $\sin (\theta-\phi)=\frac{1}{2 i}\left[\frac{a}{b}-\frac{b}{a}\right]$ prove that,
$
\begin{array}{l}
=(\cos \theta+i \sin \theta)(\cos \phi+i \sin \phi)^{-1} \\\\
=(\cos \theta+i \sin \theta)(\cos \phi-i \sin \phi)\\\\
\end{array}
$
$$
\begin{array}{l}
\Rightarrow \frac{a}{b}=\cos (\theta-\phi)+i \sin (\theta-\phi)\\\\
a l s o, \frac{b}{a}=\left(\frac{a}{b}\right)^{-1}=[\cos (\theta-\phi)+i \sin (\theta-\phi)]^{-1}\\ \\
\Rightarrow \frac{b}{a}=\cos (\theta-\phi)-i \sin (\theta-\phi)\\\\
{\therefore(3) - (4)}\\
\frac{a}{b}-\frac{b}{a}=\cos (\theta-\phi)+i \sin (\theta-\phi)-\cos (\theta-\phi)+i \sin (\theta-\phi) \\\\
\Rightarrow \frac{a}{b}-\frac{b}{a}=2 i \sin (\theta-\phi)\\\\
\end{array}
$$