Solution :
Given :
Length, $\quad L=3 ~m=3000~mm$
Width, $\quad b=250~mm$
Diameter or Thickness, $\quad d=150~mm$
Young Modulus, $\quad E=2×10^5~N/mm^2$
Poisson ratio, $\quad \mu =0.25$
$\begin{aligned}\sigma=\frac{P}{A} &=\frac{50 \times 10^{3}}{250 \times 150}\\
&=1.33 {~N} /{mm}^{2}\end{aligned}$
1) change in length (dL)
$\begin{aligned}dL=\frac{P L}{A E} &=\frac{50 \times 10^{3} \times 3000}{250 \times 150 \times 2 \times 10^{5}}\\
&=0.02 {~mm}
\end{aligned}$
2) Change in breadth (db)
$\begin{aligned} \mu &=\frac{\text { lateral Strain }}{\text { longitudinal Strain }} \\
\mu &=\frac{\frac{db}{b}}{\frac{dL}{L}}\\
\frac{d b}{b} &= \mu\frac{d L}{L} \Rightarrow d b =\frac{\mu dL ~b}{L}\\
db &=\frac{0.25 \times 0.02 \times 250}{3000}\\
db &=4.16 \times 10^{-4} {~mm} \end{aligned}$
3) Change in thickness (dt)
$\begin{aligned}
d t &=\mu \frac{d L}{L} \times t\\
&=\frac{0.25 \times 0.02 \times 150}{3000}\\
&=2.5 \times 10^{-4} {~mm}
\end{aligned}$
4) Modulus of rigidity (G)
$E=2 G(1+\mu )$
$\begin{aligned}
G &=\frac{E}{2(1+\mu )}\\ &=\frac{2 \times 10^{5}}{2(1+0.25)}\\
&=8 \times 10^{4} {~N} /{mm}^{2}
\end{aligned}$
5) Bulk modulus (K)
$
\begin{aligned}
E &=3 K(1-2 \mu) \\
K &=\frac{E}{3(1-2 \mu)}\\
&=\frac{2 \times 10^{5}}{3(1-2(0.25))}\\
&=13.33 \times 10^{4} {~N}/{mm}^{2}
\end{aligned}
$
6) Volumetric Strain (dV/V)
$\begin{aligned}
\frac{d V}{V}=\frac{\sigma}{K}&=\frac{1.33}{13.33×10^6}\\
&= 9.97 \times 10^{-6} \end{aligned}$
7) Change in Volume (dV)
$\begin{aligned}
V &=\frac{\pi }{4}d^2L\\
&=\frac{\pi }{4}(150)^2×3000\\
&=53.01×10^6 ~mm^3
\end{aligned}$
$\begin{aligned}{dV} &={9.97 \times 10^{-6}}×V\\
dV&=9.97 \times 10^{-6}×{53.01\times 10^{6}}\\
&=528.5 {~mm^3}\end{aligned}$