written 2.8 years ago by | modified 2.7 years ago by |
The system shown in figure is initially at rest. Neglecting friction determine the force 'P' required if the velocity of the collar B is 5 m/s after 2 sec and corresponding tension in the cable.
written 2.8 years ago by | modified 2.7 years ago by |
The system shown in figure is initially at rest. Neglecting friction determine the force 'P' required if the velocity of the collar B is 5 m/s after 2 sec and corresponding tension in the cable.
written 2.7 years ago by | • modified 2.7 years ago |
Given :
u = o m/s
v = 5m/s
t = 2 sec
$ \text{Assumptions:}$
$\text{1) The total length of the string is $L$ meter.}$
$\text{2) $x_A $and $x_B$ are the displacements of block A and B respectively.} $
$\text{3) $K_1$, $K_2$ and $K_3$ be the constant length w.r.t block A and B.} $
$\text{4) T be the tension in the string. }$
$\space $
$\space $
$\text{Applying constant string length method,}$
$ \begin {aligned} L &= K_1+x_B+K_2+x_B+K_3+x_A\\ x_A &=L-K_1-2x_B-K_2-K_3 \space\space\space....(1) \end {aligned} $
$\text{Differentiating equation (1) twice w.r.t. time,}$
$a_A=-2a_B$
$\text{(We consider magnitude only)}$
$\therefore a_A=2a_B$
$\therefore a_A=2 \times (\frac{v-u}{t} )$
$\therefore a_A=2 \times (\frac{5-0}{2} )$
$\therefore a_A= 5\space m/s^2$
F.B.D of block A
$\space $
$\space $
$\text{Weight of block A}$
$W_A=m_{A} \times g =1.5 \times 9.81 $
$W_A= 14.715 N $
$\space $
$\text{Applying Newtons $2^{nd} $ law of motion,}$
$\text{Along Y- axis}$
$\Sigma F_y = m_A \times a_A \\ \therefore T-W_A= m_A \times a_A \\ \therefore T-14.715=1.5 \times 5 \\ \therefore T=22.215 \space N $
F.B.D of block B
$\space $
$\space $
$\text{Applying Newtons $2^{nd} $ law of motion,}$
$\text{Along X- axis}$
$ \begin {array}{I} \Sigma F_x = m_B \times a_B \\ \therefore P-2T= m_B \times a_B \\ \therefore P-(2 \times 14.715)=3 \times 2.5 \\ \therefore P=51.93 \space N \end{array}$