written 2.8 years ago by
Chandan15
• 300
|
•
modified 2.8 years ago
|
\begin{array}{l}
\text { Given Data: } \
D_{0}=50 \mathrm{~mm}, \quad D_{\text {in }}=46 \mathrm{~mm} \
L_{e}=4 \mathrm{~m}=4000 \mathrm{~mm} \
f_{c}=310 \mathrm{MPa} \
\alpha=\frac{1}{7500}, E=210 \times 10^{3} \mathrm{MPa}
\end{array}
\begin{array}{l}
\text { As per Euler's theory, }\
P=\frac{\pi^{2} E I}{Le^{2}};\ P= \frac{π^{2} \times 210 \times 10^{3} \times \frac{\pi}{64}\left[50^{4}-46^{4}\right]}{(4000)^2};\
P=11.27 \mathrm{kN} \text { ,Euler Load. }
\end{array}
\begin{array}{l}
\text { As per Rainkine's Theory,} \text { }\
P=\frac{f_{c} A}{1+\alpha \lambda^{2}};\
\lambda=\frac{l}{\gamma};\
I=A r^{2}\
\Rightarrow \frac{π}{64 }\left(50^{4}-46^{4}\right)=\frac{\pi}{4}\left(50^{2}-46^{2}\right)\
\Rightarrow \frac{\left(50^{2}-46^{2}\right)\left(50^{2}+46^{2}\right)}{16}=\left(50^{2}-46\right) \times r^{2}\
\Rightarrow \quad r=16.985 \mathrm{~mm}
\end{array}
$P=\frac{310 \times \frac{\pi}{4}\left(50^{2}-46^{2}\right)}{1+\frac{1}{7500} \times(16.985)^{2}}\\P=90.03 \mathrm{kN}$